
应用化学 ›› 2022, Vol. 39 ›› Issue (11): 1757-1765.DOI: 10.19894/j.issn.1000-0518.220074
吴利军1, 郭守杰1(), 张超1, 李知声1, 李唯聪1, 杨长春2(
)
收稿日期:
2022-03-15
接受日期:
2022-07-07
出版日期:
2022-11-01
发布日期:
2022-11-09
通讯作者:
郭守杰,杨长春
基金资助:
Li-Jun WU1, Shou-Jie GUO1(), Chao ZHANG1, Zhi-Sheng LI1, Wei-Cong LI1, Chang-Chun YANG2(
)
Received:
2022-03-15
Accepted:
2022-07-07
Published:
2022-11-01
Online:
2022-11-09
Contact:
Shou-Jie GUO,Chang-Chun YANG
About author:
gsjxcu@126.comSupported by:
摘要:
锂钠合金相较于单一锂或者单一钠具有更优异的性能,以钠金属为正极、锂金属为负极,以LiPF6、NaClO4以及锂钠混合离子电解液作为电解液,组装成纽扣电池,在梯度电流密度下进行充放电,成功实现了锂钠合金的原位电化学制备。得益于锂、钠双电化学活性离子的协同效应,不同钠含量的锂钠合金为负极的锂钠混合离子电容器均呈现良好的电化学性能。尤其是低钠量的锂钠合金负极,添加NaClO4电解液时,活化的柠檬酸钾衍生碳(SCDC-活化)正极在1 A/g电流密度下循环300圈时仍能保持238 mA·h/g的比容量和99%的容量保持率。高钠量的锂钠合金负极,添加锂钠混合离子电解液时,SCDC-活化呈现了319 mA·h/g的比容量,并在循环1040圈时仍能保持93 mA·h/g的高比容量和98%的容量保持率。
中图分类号:
吴利军, 郭守杰, 张超, 李知声, 李唯聪, 杨长春. 锂钠合金的原位电化学制备及“锂+钠”共储特性[J]. 应用化学, 2022, 39(11): 1757-1765.
Li-Jun WU, Shou-Jie GUO, Chao ZHANG, Zhi-Sheng LI, Wei-Cong LI, Chang-Chun YANG. In⁃situ Electrochemical Preparation of Li⁃Na Alloy and the Co⁃storage of Li+ and Na+ Ions[J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1757-1765.
图1 锂金属对钠金属纽扣电池添加1 mol/L LiPF6 EC/DEC(体积比1∶1)、1 mol/L NaClO4 EC/DEC/DMC(体积比1∶1∶1)及上述两种电解液等体积混合的锂钠混合离子电解液时的(A)循环伏安曲线和(B)阻抗图
Fig.1 (A) Cyclic Voltammetry (CV) curves and (B) Electrochemical Impedance Spectroscopy (EIS) of lithium metal versus sodium metal button battery by adding 1 mol/L LiPF6 in EC/DEC with the volume ratio of 1∶1, 1 mol/L NaClO4 in EC/DEC/DMC with the volume ratio of 1∶1∶1 and the above two mixed electrolytes with equal volume
图2 0.1 A/g电流密度下充放电2000圈循环后锂、钠金属片的扫描电子显微镜图预嵌钠的锂金属片:A. LiPF6电解液; C. NaClO4电解液; E.锂钠混合离子电解液。预嵌锂的钠金属片: B. LiPF6电解液; D. NaClO4电解液; F. 锂钠混合离子电解液
Fig.2 Scanning electron microscopy (SEM) images of lithium and sodium metal disc after 2000 cycles at the current density of 0.1 A/gLithium metal disc pre-embedded with sodium: A. LiPF6 electrolyte; C. NaClO4 electrolyte; E. lithium sodium mixed ion electrolyte. Sodium metal disc pre-embedded with lithium: B. LiPF6 electrolyte; D. NaClO4 electrolyte; F. lithium sodium mixed ion electrolyte
图3 充放电2000圈循环后锂(A、B 和C)、钠(D、E和F)金属片能谱图(EDS)低钠量锂钠合金: A. LiPF6电解液; B. NaClO4电解液; C.锂钠混合离子电解液。高钠量锂钠合金: D. LiPF6电解液; E. NaClO4电解液; F. 锂钠混合离子电解液
Fig.3 EDS of lithium and sodium metal disc after 2000 cycles at the current density of 0.1 A/gLithium sodium alloy with low Na content: A. LiPF6 electrolyte; B. NaClO4 electrolyte; C. lithium sodium mixed ion electrolyte Lithium sodium alloy with high Na content: D. LiPF6 electrolyte; E. NaClO4 electrolyte; F. lithium sodium mixed ion electrolyte
图6 以SCDC-活化为测试电极, (A)、 (B)低钠量的锂钠合金和(D)、 (E)高钠量的锂钠合金为对电极进行的梯度测试结果; (C)和(F)梯度测试后直接测试的1 A/g电流密度下的循环稳定性
Fig.6 The gradient tests were obtained by using SCDC-activated as the test electrode, (A) and (B) lithium sodium alloy with low Na content and (D) and (E) lithium sodium alloy with high Na content as the counter electrodes, (C) and (F) cyclic stability directly tested after gradient tests at 1 A/g current density
图7 以SCDC-活化为测试电极,高钠量的锂钠金属为对电极在0.4 mV/s扫速下所测试的(A)循环伏安曲线和(B)循环前后阻抗对比图
Fig.7 (A) The Cyclic voltammetry curves at 0.4 mV/s and (B) Electrochemical impedance contrast diagrams before and after 1000 at 1 A/g current density were determined by using SCDC-activated as the test electrode, lithium sodium alloy with high Na content as the counter electrodes
1 | ARMAND M, TARASEON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
2 | 胡健, 蒙延双, 胡倩茹. 磷化镍/氮磷共掺杂碳负极材料的制备及其电化学性能研究[J]. 电化学, 2021, 27(5): 540-548. |
HU J, MENG Y S, HU Q R. Synthesis of nickel phosphide/nitrogen phosphorus co-doped carbon and its application in lithium ion batteries[J]. J Electrochem, 2021, 27(5): 540-548. | |
3 | 官亦标, 沈进冉, 李康乐, 等. 电容锂离子电池研究进展[J]. 储能科学与技术, 2019, 8(5): 799-806. |
GUAN Y B, SHEN J R, LI K L,et al. Research progress on capacitive lithium-ion battery[J]. Energy Storage Sci Technol, 2019, 8(5): 799-806. | |
4 | YANG X, WANG S, YU D, et al. Direct conversion of metal-organic frameworks into selenium/selenide/carbon composites with high sodium storage capacity[J]. Nano Energy, 2019, 58: 392-398. |
5 | 郎俊伟, 张旭, 杨兵军, 等.非水体系锂/钠离子电容器研究进展[J].中国科学: 化学, 2018, 48(12): 1478-1513. |
LANG J W, ZHANG X, YANG B J, et al. Research progress in nonaqueous lithium/sodium-ion capacitors[J]. Sci China Chem, 2018, 48(12): 1478-1513. | |
6 | LE Z, LIU F, NIE P, et al. Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors[J]. ACS Nano, 2017, 11(3): 2952-2960. |
7 | YAO H R, YOU Y, YIN Y X, et al. Rechargeable dual-metal-ion batteries for advanced energy storage[J]. Phys Chem Chem Phys, 2016, 18: 9326-9333. |
8 | LI S H, CHEN J W, GONG X F, et al. A nonpresodiate sodium-ion capacitor with high performance[J]. Small, 2018, 14(50): 1804035. |
9 | 赵立平, 陶科宇, 王宏宇, 等. 钛酸钠纳米管-碳复合材料用作钠离子电容电池负极材料[J]. 应用化学, 2018, 35(10): 1264-1270. |
ZHAO L P, TAO K Y, WANG H Y, et al. Sodium titanate nanotube-carbon composite as negative electrode materials for Na-ion supercapattery[J]. Chinese J Appl Chem, 2018, 35(10): 1264-1270. | |
10 | JIA R, JIANG Y, LI R, et al. Nb2O5 nanotubes on carbon cloth for high performance sodium ion capacitors[J]. Sci China Mater, 2020, 63: 1171-1181. |
11 | JIA R, SHEN G Z, CHEN D. Recent progress and future prospects of sodium-ion capacitors[J]. Sci China Mater, 2020, 63(2): 22. |
12 | ZHANG Y, JIANG J, AN Y, et al. Sodium-ion capacitors: materials, mechanism, and challenges[J]. Chem Sus Chem, 2020, 13(10): 2522-2539. |
13 | XIN S, YU L, YOU Y, et al. The electrochemistry with lithium versus sodium of selenium confined to slit micropores in carbon[J]. Nano Lett, 2016, 16: 4560-4568. |
14 | LIU W J, CHEN X L, ZHANG C, et al. Gassing in Sn-anode sodium-ion batteries and its remedy by metallurgically prealloying Na[J]. ACS Appl Mater Inter, 2019, 11(26): 23207-23212. |
15 | NAM D H, KIM T H, HONG K S, et al. Template-free electrochemical synthesis of Sn nanofibers as high-performance anode materials for Na-ion batteries[J]. ACS Nano, 2014, 8(11): 11824-11835. |
16 | JIAN D, WEI Z, CHAO W, et al. Self-wrapped Sb/C nanocomposite as anode material for high-performance sodium-ion batteries[J]. Nano Energy, 2015, 16: 479-487. |
17 | KONG F, HAN Z, TAO S, et al. Core-shell structured SnSe@C microrod for Na-ion battery anode[J]. J Energy Chem, 2021(4): 9. |
18 | ZHANG J, YIN Y X, GUO Y G. High-capacity Te anode confined in microporous carbon for long-life Na-ion batteries[J]. ACS Appl Mater, 2015, 7(50): 27838-27844. |
19 | FANG Y J, YU X Y, LOU X W. Formation of polypyrrole-coated Sb2Se3 microclips with enhanced sodium-storage properties[J]. Angew Chem Int Ed, 2018, 57(31): 9859-9863. |
20 | LI W, ZHOU M, LI H, et al Carbon-coated Sb2Se3 composite as anode material for sodium ion batteries[J]. Electrochem Commun, 2015, 60: 74-77. |
21 | WANG M, PENG A, XU H, et al. Amorphous SnSe quantum dots anchoring on graphene as high performance anodes for battery/capacitor sodium ion storage[J]. J Power Sources, 2020, 469: 228414. |
22 | JIA W G, MIAO X Z, XIN Z, et al. Redispersed Bi nanoparticles on graphene fiber fabric anode regulated by microwave irradiation for flexible sodium ion capacitors[J]. Chem Eng J, 2022, 433: 133521. |
23 | WANG G R, LI Y P, JIAO S H, et al. Realizing the synergy of Sn cluster incorporation and nitrogen doping for a carbonaceous hierarchical nanosheet-assembly enables superior universal alkali metal ion storage performance with multiple active sites[J]. J Mater Chem A, 2020, 8: 24774-24781. |
24 | PALANISELVAM T, BABU B, MOON H, et al. Tin-containing graphite for sodium-ion batteries and hybrid capacitors[J]. Batteries Supercaps, 2021, 4(1): 173-182. |
25 | ZHANG L, ZHU X L, WANG G Y, et al. Bi nanoparticles embedded in 2D carbon nanosheets as an interfacial layer for advanced sodium metal anodes[J]. Small, 2021, 17(12): 2007578. |
26 | WANG G, YU F, ZHANG Y, et al. 2D Sn/C freestanding frameworks as a robust nucleation layer for highly stable sodium metal anodes with a high utilization[J]. Nano Energy, 2021, 79: 105457. |
27 | STARK J K, DING Y, KOHL P A. Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery[J]. J Electrochem Soc, 2011, 158(10): A1100-A1105. |
28 | MA J L, MENG F L, YUE Y, et al. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O2 batteries[J]. Nat Chem, 2019, 11: 64-70. |
29 | YU D L, LIU D, SHI L, et al. High-performance metal-iodine batteries enabled by a bifunctional dendrite-free Li-Na alloy anode[J]. J Mater Chem A,2021, 9(1): 538-545. |
30 | ZHANG Q, LU Y Y, MIAO L C, et al. An alternative to lithium metal anodes: non-dendritic and highly reversible sodium metal anodes for Li-Na hybrid batteries[J]. Angew Chem, 2018, 130(45): 15012-15016. |
31 | WANG W, ZHANG R P, ZUO P J, et al. An interphase-enhanced liquid Na-K anode for dendrite-free alkali metal batteries enabled by SiCl4 electrolyte additive[J]. Energy Storage Mater, 2021, 37: 199-206. |
[1] | 郭少波, 梁艳莉, 刘智峰, 张强, 马剑琪. 四环素-Ag复合材料的协同抑菌性能[J]. 应用化学, 2021, 38(11): 1462-1468. |
[2] | 朱浩天, 李晓辉, 白建萍, 卢明达, 安悦, 由万胜. 铜配合物修饰的Dawson型钨磷酸盐的合成、晶体结构和催化性能[J]. 应用化学, 2015, 32(4): 433-441. |
[3] | 谭育慧, 王艳, 章朦, 高继兴, 徐庆, 唐云志, 杨韶平. 电解铜箔表面电沉积Zn-Ni-P-La合金工艺[J]. 应用化学, 2015, 32(4): 458-463. |
[4] | 郭秋兰, 郭清泉, 罗汝洪, 谭迪聪, 赖香峰, 郭少峰. 藤茶干粉提取液还原制备金纳米粒子[J]. 应用化学, 2014, 31(07): 841-846. |
[5] | 刘涛, 魏冬, 姜波, 徐国永, 周双生. 阿司匹林铜(Ⅱ)配合物的合成、晶体结构和抗肿瘤活性[J]. 应用化学, 2014, 31(03): 296-302. |
[6] | 郑义智, 王海水. 银/二氧化硅核壳纳米颗粒的制备及其壳层厚度对其光学性质的影响[J]. 应用化学, 2014, 31(03): 323-327. |
[7] | 王娟, 祁晓婷, 李子颖, 何福兰, 朱文华, 郭建. 铀酰杂化超分子化合物的合成、结构、电化学、荧光及光催化性质[J]. 应用化学, 2014, 31(02): 193-199. |
[8] | 唐梅香, 易清风. 银锡双金属催化剂的制备及其对氧还原的催化性能[J]. 应用化学, 2013, 30(10): 1176-1181. |
[9] | 任莹辉, 李文, 张鲜波, 赵凤起, 仪建华, 马海霞, 徐抗震, 宋纪蓉. 3,6-双(1-氢-1,2,3,4-四唑-5-氨基)-1,2,4,5-四嗪银盐的热分解反应动力学及热安全性[J]. 应用化学, 2013, 30(09): 1036-1041. |
[10] | 赵晶, 张衡, 朱果逸. D-甘露糖肟混价铜(Ⅰ/Ⅱ)配合物的合成与配位机理[J]. 应用化学, 2012, 29(10): 1158-1162. |
[11] | 王娟, 吕鑫, 何福兰, 苏进雄. 超分子化合物[UO2Cl4][phenH]2的合成、晶体结构、荧光性质及[UO2Cl4][phenH]2/PVA薄膜的发光性能[J]. 应用化学, 2011, 28(02): 168-176. |
[12] | 邱俊, 王建刚, 孙杰. 改性沸石H-BEA催化4-苯基丁酸分子内付克反应合成1-萘满酮[J]. 应用化学, 2011, 28(02): 194-198. |
[13] | 孙伟, 张其胜, 程延祥, 谢志元, 卢灿忠, 王利祥. 2-[(二苯基膦基)甲基]吡啶铜(I)配合物的合成及光物理和电致发光性质[J]. 应用化学, 2010, 27(12): 1403-1408. |
[14] | 郭琦, 缪建军, 耿珺, 朱俊杰. 微波热解法制备Cu/Cu2O纳米材料[J]. 应用化学, 2010, 27(12): 1438-1443. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 5287
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1098
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||