1 |
PANDIYAN S, ARUMUGAM L, SRIRENGAN S P, et al. Biocompatible carbon quantum dots derived from sugarcane industrial wastes for effective nonlinear optical behavior and antimicrobial activity applications[J]. ACS Omega, 2020, 5(47): 30363-30372.
|
2 |
MACINA A, DE MEDEIROS T V, NACCACHE R. A carbon dot-catalyzed transesterification reaction for the production of biodiesel[J]. J Mater Chem A, 2019, 7(41): 23794-23802.
|
3 |
LIU W, HUANG G, SU X, et al. Zebrafish: a promising model for evaluating the toxicity of carbon dot-based nanomaterials[J]. ACS Appl Mate Interfaces, 2020, 12(43): 49012-49020.
|
4 |
LIANG W X, WANG P, MEZIANI M J, et al. On the myth of “red/near-IR carbon quantum dots” from thermal processing of specific colorless organic precursors[J]. Nanoscale Adv, 2021, 3(14): 4186-4195.
|
5 |
WAREING T C, GENTILE P, PHAN A N. Biomass-based carbon dots: current development and future perspectives[J]. ACS Nano, 2021, 15(10): 15471-15501.
|
6 |
PERIKALA M, BHARDWAJ A. Excellent color rendering index single system white light emitting carbon dots for next generation lighting devices[J]. Sci Rep, 2021, 11(1): 11594.
|
7 |
GANESAN S, KALIMUTHU R, KANAGARAJ T, et al. Microwave-assisted green synthesis of multi-functional carbon quantum dots as efficient fluorescence sensor for ultra-trace level monitoring of ammonia in environmental water[J]. Environ Res, 2022, 206: 112589.
|
8 |
GAO P, LIU S, SU Y, et al. Fluorine-doped carbon dots with intrinsic nucleus-targeting ability for drug and dye delivery[J]. Bioconjugate Chem 2020, 31(3): 646-655.
|
9 |
LI F, YANG D Y, XU H P. Non-metal-heteroatom-doped carbon dots: synthesis and properties[J]. Chem Eur, 2019, 25(5): 1165-1176.
|
10 |
QI H, WU X, ZHANG H, et al. Synthesis of multiple-color emissive carbon dots towards white-light emission[J]. Nanotechnology, 2020, 31(24): 245001.
|
11 |
刘巧玲, 任博荣, 刘睿蓉, 等. N-掺杂的荧光碳点比率识别Ag+的性能[J]. 应用化学, 2021, 38(11): 1512-1520.
|
|
LIU Q L, REN B R, LIU R R, et al. N-doped carbon dots with ratio fluorescent detection for Ag+[J]. Chinese J Appl Chem, 2021, 38(11): 1512-1520.
|
12 |
CHANDRA S, PATRA P, PATHAN S H, et al. Luminescent S-doped carbon dots: an emergent architecture for multimodal applications[J]. J Mater Chem B, 2013, 1: 2375-2382.
|
13 |
GUAN Q, SU R, ZHANG M, et al. Highly fluorescent dual-emission red carbon dots and their applications in optoelectronic devices and water detection[J]. N J Chem, 2019, 43(7): 3050-3058.
|
14 |
弓辉, 康玉, 张荣, 等. 氮掺杂碳点的制备及其对阿莫西林高灵敏检测[J]. 应用化学, 2020, 37(2): 227-234.
|
|
GONG H, KANG Y, ZHANG R, et al. Preparation of nitrogen-doped carbon dots for highly sensitive detection of amoxicillin[J]. Chinese J Appl Chem, 2020, 37(2): 227-234.
|
15 |
KARAMAN C. Orange peel derived-nitrogen and sulfur co-doped carbon dots: a nano-booster for enhancing orr electrocatalytic performance of 3D graphene networks[J]. Electroanal, 2021, 33(5): 1356-1369.
|
16 |
PRAMANIK A, BISWAS S, TIWARY C S, et al. Forster resonance energy transfer assisted white light generation and luminescence tuning in a colloidal graphene quantum dot-dye system[J]. J Colloid Interface Sci, 2020, 565: 326-336.
|
17 |
ZHANG H, ZHANG H Q, PAN A Z, et al. Rare earth-free luminescent materials for WLEDs: recent progress and perspectives[J]. Adv Mater Technol, 2021, 6(1): 2000648.
|
18 |
DWIVEDI J, KUMAR P, KEDAWAT G, et al. New emerging rare-earth free yellow emitting 2D BCNO nanophosphor for white light emitting diodes[J]. New J Chem, 2015, 39: 5161-5170.
|
19 |
SUN C, ZHANG Y, SUN K, et al. Combination of carbon dot and polymer dot phosphors for white light-emitting diodes[J]. Nanoscale, 2015, 7: 12045-12050.
|
20 |
DANG P, LIU D, LI G, et al. Recent advances in bismuth ion-doped phosphor materials: structure design, tunable photoluminescence properties, and application in white LEDs[J]. Adv Opt Mater, 2020, 8(16): 1901993.
|
21 |
YAN J, ZHANG Z, WEN D, et al. Crystal structure and photoluminescence tuning of novel single-phase Ca8ZnLu(PO4)7∶Eu2+, Mn2+ phosphors for near-UV converted white light-emitting diodes[J]. J Mater Chem C, 2019, 7(27): 8374-8382.
|
22 |
LIU D, YUN X, DANG P, et al. Yellow/orange-emitting ABZn2Ga2O7:Bi3+ (A=Ca, Sr; B=Ba, Sr) phosphors: optical temperature sensing and white light-emitting diode applications[J]. Chem Mater, 2020, 32(7): 3065-3077.
|
23 |
QIAO J, ZHOU G, ZHOU Y, et al. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes[J]. Nat Commun, 2019, 10(1): 5267.
|
24 |
ZHONG J, ZHUO Y, HARIYANI S, et al. Closing the cyan gap toward full-spectrum LED lighting with NaMgBO3∶Ce3+[J]. Chem Mater, 2020, 32(2): 882-888.
|
25 |
ULLAH K W, ZHOU L, LI X, et al. Single phase white LED phosphor Ca3YAl3B4O15∶Ce3+, Tb3+, Sm3+ with superior performance: color-tunable and energy transfer study[J]. Chem Eng J, 2021, 410: 128455.
|
26 |
WANAG A, SIENKIEWICZ P, KUSIAK-NEJMAN E, et al. Preparation and characterization of TiO2 modified with APTMS for phenol decomposition[J]. Desalin Water Treat, 2020, 207: 115-121.
|
27 |
LU W B, QIN X Y, LIU S, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(Ⅱ) ions[J]. Anal Chem, 2012, 84: 5351-5357.
|
28 |
GAO Y, QIU X, ZHAO F, et al. Linear and nonlinear photophysical properties of ZnSe/CdS/ZnS core/shell/shell type Ⅱ nanocrystals[J]. Photon Res, 2020, 8(9): 1416-1421.
|
29 |
王林鹏, 马玉洁, 周学华, 等. 碳点的制备与应用研究进展[J]. 材料工程, 2015, 43(5): 101-112.
|
|
WANG L P, MA Y J, ZHOU X H, et al. Progress in research on preparation and application of carbon dots[J]. J Mater Eng, 2015, 43(5): 101-112.
|
30 |
曲松楠, 孙铭鸿, 田震, 等. 氮掺杂碳点的合成与应用[J]. 发光学报, 2019, 40(5): 557-580.
|
|
QU S N, SUN M H, TIAN Z, et al. Synthesis and application of nitrogen-doped carbon dots[J]. Chinese J Lumin, 2019, 40(5): 557-580.
|
31 |
CAO D, LUO Y X, LIU W P, et al. Enzyme-free fluorescence determination of uric acid and trace Hg(Ⅱ) in serum using Si/N doped carbon dots[J]. Spectrochim Acta A: Mol Biomol Spectrosc, 2021, 263: 120182.
|
32 |
MAO L H, TANG W Q, DENG Z Y, et al. Facile access to white fluorescent carbon dots toward light-emitting devices[J]. Ind Eng Chem Res, 2014, 53(15): 6417-6425.
|
33 |
QI H, TENG M, LIU M, et al. Biomass-derived nitrogen-doped carbon quantum dots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines[J]. J Colloid Interface Sci, 2019, 539: 332-341.
|
34 |
MON-PEREZ E, DUTT A, SANTOYO-SALAZAR J, et al. Double stack layer structure of SiNx/pm-Si thin films for downshifting and antireflection properties[J]. Mater Lett, 2017, 203: 50-53.
|
35 |
LI Q, LUO T Y, ZHOU M, et al. Silicon nanoparticles with surface nitrogen: 90% quantum yield with narrow luminescence bandwidth and the ligand structure based energy law[J]. ACS Nano, 2016, 10: 8385-8393.
|
36 |
ZHONG Y L, PENG F, BAO F, et al. Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes[J]. J Am Chem Soc, 2013, 135: 8350-8356.
|
37 |
LIU Y, LI W, WU P, et al. Organosilane-functionalized carbon quantum dots and their applications to “on-off-on” fluorometric determination of chromate and ascorbic acid, and in white light-emitting devices[J]. Microchim Acta, 2019, 186(8): 516.
|