1 |
ARMAND M, TARASEON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
|
2 |
胡健, 蒙延双, 胡倩茹. 磷化镍/氮磷共掺杂碳负极材料的制备及其电化学性能研究[J]. 电化学, 2021, 27(5): 540-548.
|
|
HU J, MENG Y S, HU Q R. Synthesis of nickel phosphide/nitrogen phosphorus co-doped carbon and its application in lithium ion batteries[J]. J Electrochem, 2021, 27(5): 540-548.
|
3 |
官亦标, 沈进冉, 李康乐, 等. 电容锂离子电池研究进展[J]. 储能科学与技术, 2019, 8(5): 799-806.
|
|
GUAN Y B, SHEN J R, LI K L,et al. Research progress on capacitive lithium-ion battery[J]. Energy Storage Sci Technol, 2019, 8(5): 799-806.
|
4 |
YANG X, WANG S, YU D, et al. Direct conversion of metal-organic frameworks into selenium/selenide/carbon composites with high sodium storage capacity[J]. Nano Energy, 2019, 58: 392-398.
|
5 |
郎俊伟, 张旭, 杨兵军, 等.非水体系锂/钠离子电容器研究进展[J].中国科学: 化学, 2018, 48(12): 1478-1513.
|
|
LANG J W, ZHANG X, YANG B J, et al. Research progress in nonaqueous lithium/sodium-ion capacitors[J]. Sci China Chem, 2018, 48(12): 1478-1513.
|
6 |
LE Z, LIU F, NIE P, et al. Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors[J]. ACS Nano, 2017, 11(3): 2952-2960.
|
7 |
YAO H R, YOU Y, YIN Y X, et al. Rechargeable dual-metal-ion batteries for advanced energy storage[J]. Phys Chem Chem Phys, 2016, 18: 9326-9333.
|
8 |
LI S H, CHEN J W, GONG X F, et al. A nonpresodiate sodium-ion capacitor with high performance[J]. Small, 2018, 14(50): 1804035.
|
9 |
赵立平, 陶科宇, 王宏宇, 等. 钛酸钠纳米管-碳复合材料用作钠离子电容电池负极材料[J]. 应用化学, 2018, 35(10): 1264-1270.
|
|
ZHAO L P, TAO K Y, WANG H Y, et al. Sodium titanate nanotube-carbon composite as negative electrode materials for Na-ion supercapattery[J]. Chinese J Appl Chem, 2018, 35(10): 1264-1270.
|
10 |
JIA R, JIANG Y, LI R, et al. Nb2O5 nanotubes on carbon cloth for high performance sodium ion capacitors[J]. Sci China Mater, 2020, 63: 1171-1181.
|
11 |
JIA R, SHEN G Z, CHEN D. Recent progress and future prospects of sodium-ion capacitors[J]. Sci China Mater, 2020, 63(2): 22.
|
12 |
ZHANG Y, JIANG J, AN Y, et al. Sodium-ion capacitors: materials, mechanism, and challenges[J]. Chem Sus Chem, 2020, 13(10): 2522-2539.
|
13 |
XIN S, YU L, YOU Y, et al. The electrochemistry with lithium versus sodium of selenium confined to slit micropores in carbon[J]. Nano Lett, 2016, 16: 4560-4568.
|
14 |
LIU W J, CHEN X L, ZHANG C, et al. Gassing in Sn-anode sodium-ion batteries and its remedy by metallurgically prealloying Na[J]. ACS Appl Mater Inter, 2019, 11(26): 23207-23212.
|
15 |
NAM D H, KIM T H, HONG K S, et al. Template-free electrochemical synthesis of Sn nanofibers as high-performance anode materials for Na-ion batteries[J]. ACS Nano, 2014, 8(11): 11824-11835.
|
16 |
JIAN D, WEI Z, CHAO W, et al. Self-wrapped Sb/C nanocomposite as anode material for high-performance sodium-ion batteries[J]. Nano Energy, 2015, 16: 479-487.
|
17 |
KONG F, HAN Z, TAO S, et al. Core-shell structured SnSe@C microrod for Na-ion battery anode[J]. J Energy Chem, 2021(4): 9.
|
18 |
ZHANG J, YIN Y X, GUO Y G. High-capacity Te anode confined in microporous carbon for long-life Na-ion batteries[J]. ACS Appl Mater, 2015, 7(50): 27838-27844.
|
19 |
FANG Y J, YU X Y, LOU X W. Formation of polypyrrole-coated Sb2Se3 microclips with enhanced sodium-storage properties[J]. Angew Chem Int Ed, 2018, 57(31): 9859-9863.
|
20 |
LI W, ZHOU M, LI H, et al Carbon-coated Sb2Se3 composite as anode material for sodium ion batteries[J]. Electrochem Commun, 2015, 60: 74-77.
|
21 |
WANG M, PENG A, XU H, et al. Amorphous SnSe quantum dots anchoring on graphene as high performance anodes for battery/capacitor sodium ion storage[J]. J Power Sources, 2020, 469: 228414.
|
22 |
JIA W G, MIAO X Z, XIN Z, et al. Redispersed Bi nanoparticles on graphene fiber fabric anode regulated by microwave irradiation for flexible sodium ion capacitors[J]. Chem Eng J, 2022, 433: 133521.
|
23 |
WANG G R, LI Y P, JIAO S H, et al. Realizing the synergy of Sn cluster incorporation and nitrogen doping for a carbonaceous hierarchical nanosheet-assembly enables superior universal alkali metal ion storage performance with multiple active sites[J]. J Mater Chem A, 2020, 8: 24774-24781.
|
24 |
PALANISELVAM T, BABU B, MOON H, et al. Tin-containing graphite for sodium-ion batteries and hybrid capacitors[J]. Batteries Supercaps, 2021, 4(1): 173-182.
|
25 |
ZHANG L, ZHU X L, WANG G Y, et al. Bi nanoparticles embedded in 2D carbon nanosheets as an interfacial layer for advanced sodium metal anodes[J]. Small, 2021, 17(12): 2007578.
|
26 |
WANG G, YU F, ZHANG Y, et al. 2D Sn/C freestanding frameworks as a robust nucleation layer for highly stable sodium metal anodes with a high utilization[J]. Nano Energy, 2021, 79: 105457.
|
27 |
STARK J K, DING Y, KOHL P A. Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery[J]. J Electrochem Soc, 2011, 158(10): A1100-A1105.
|
28 |
MA J L, MENG F L, YUE Y, et al. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O2 batteries[J]. Nat Chem, 2019, 11: 64-70.
|
29 |
YU D L, LIU D, SHI L, et al. High-performance metal-iodine batteries enabled by a bifunctional dendrite-free Li-Na alloy anode[J]. J Mater Chem A,2021, 9(1): 538-545.
|
30 |
ZHANG Q, LU Y Y, MIAO L C, et al. An alternative to lithium metal anodes: non-dendritic and highly reversible sodium metal anodes for Li-Na hybrid batteries[J]. Angew Chem, 2018, 130(45): 15012-15016.
|
31 |
WANG W, ZHANG R P, ZUO P J, et al. An interphase-enhanced liquid Na-K anode for dendrite-free alkali metal batteries enabled by SiCl4 electrolyte additive[J]. Energy Storage Mater, 2021, 37: 199-206.
|