[1] STEELE B C H, HEINZEL A. Materials for fuel-cell technologies in materials for sustainable energy[M]. UK: Macmillan Publishers Ltd, 2010: 224-231. [2] TANG T, WEN J J, SHUAI N, et al. Metastable rock salt oxide-mediated synthesis of high-density dual-protected M@NC for long-life rechargeable zinc-air batteries with record power density[J]. J Am Chem Soc, 2020, 142(15): 7116-7127. [3] HE D, ZENG C, XU C, et al. Polyaniline-functionalized carbon nanotube supported platinum catalysts[J]. Langmuir, 2011, 27(9): 5582-5588. [4] TAN J L, DE JESUS A M, CHUA S L, et al. Preparation and characterization of palladium-nickel on graphene oxide support as anode catalyst for alkaline direct ethanol fuel cell[J]. Appl Catal A, 2017, 531: 29-35. [5] HUANG X X, SHEN T, Z T, et al. Efficient oxygen reduction catalysts of porous carbon nanostructures decorated with transition metal species[J]. Adv Energy Mater, 2020, 10(11): 1900375. [6] SHAO M, CHANG Q, DODELET J P, et al. Recent advances inelectrocatalysts for oxygen reduction reaction[J]. Chem Rev, 2016, 116(6): 3594-3657. [7] HE D, KOU Z, XIONG Y, et al. Simultaneous sulfonation and reduction of graphene oxide as highly efficient supports for metal nanocatalysts[J]. Carbon, 2014, 66: 312-319. [8] YOU B, KANG F, YIN P, et al. Hydrogel-derived heteroatom-doped porous carbon networks for supercapacitor and electrocatalytic oxygen reduction[J]. Carbon, 2016, 103: 9-15. [9] WANG J, HUANG Z, LIU W, et al. Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction[J]. J Am Chem Soc, 2017, 139(48): 17281-17284. [10] WANG J, LIU W, LUO G, et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction[J]. Energy Environ Sci, 2018, 11(12): 3375-3379. [11] WU X, TANG C J, CHENG Y, et al. Bifunctional catalysts for reversible oxygen evolution reaction and oxygen reduction reaction[J]. Chem Eur J, 2020, 26(18): 3906-3929. [12] PANCHENKO A, KOPER M T M, SHUBINA T E , et al. Ab initio calculations of intermediates of oxygen reduction on low-index platinum surfaces[J]. J Electrochem Soc, 2004, 151: A2016-A2027. [13] VASIC D, PASTI I, GAVRILOV N, et al. DFT study of interaction of O, O2, and OH with unreconstructed Pt(hkl) (h, k, l=0, 1) surfaces-similarities, differences, and universalities[J]. Russ J Phys Chem A, 2013, 87: 2214-2218. [14] NORSKOV J K, ROSSMEISL J, LOGADOTTIR A, et al. Origin of theoverpotential for oxygen reduction at a fuel-cell cathode[J]. J Phys Chem B, 2004, 108: 17886-17892. [15] LITSTER S, MCLEAN G. PEM fuel cell electrodes[J]. J Power Sources , 2004, 130: 61-76. [16] JUNG N, CHUNG D Y, RYU J, et al. Pt-basednanoarchitecture and catalyst design for fuel cell applications[J]. Nano Today, 2014, 9: 433-456. [17] ANTOLINI E. Carbon supports for low-temperature fuel cell catalysts[J]. Appl Catal, B, 2009, 88: 1-24. [18] ROY S C, HARDING A W, RUSSELL A E, et al. Spectroelectrochemical study of the role played by carbon functionality in fuel cell electrodes[J]. J Electrochem Soc, 1997, 144: 2323-2328. [19] SHAO Y, LIU J, WANG Y, et al. Novel catalyst support materials for PEM fuel cells: current status and future prospects[J]. J Mater Chem, 2009, 19(1): 46-59. [20] SUI S, WANG X, ZHOU X, et al. A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: nanostructure, activity, mechanism and carbon support in PEM fuel cells[J]. J Mater Chem A, 2017, 5(5): 1808-1825. [21] DEVIVARAPRASAD R, RAMESH R, NARESH N, et al. Oxygen reduction reaction and peroxide generation on shape-controlled and polycrystalline platinum nanoparticles in acidic and alkaline electrolytes[J]. Langmuir, 2014, 30(29): 8995-9006. [22] SHAO Y, ZHANG S, WANG C, et al. Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction[J]. J Power Sources, 2010, 195(15): 4600-4605. [23] JIANG Y, YANG L, SUN T, et al. Significant contribution of intrinsic carbon defects to oxygen reduction activity[J]. J ACS Catal, 2015, 5: 6707-6712. [24] AUER E, FREUND A, PIETSCH J, et al. Carbons as supports for industrial precious metal catalysts[J]. Appl Catal A, 1998, 173: 259-271. [25] TAN Y M, XU C F, CHEN G X, et al. Facile synthesis of manganese-oxide-containing mesoporous nitrogen-doped carbon for efficient oxygen reduction[J]. Adv Funct Mater, 2012, 22: 4584-4591. [26] WU G, LI D, DAI C, et al. Well-dispersed high-loading Pt nanoparticles supported by shell-core nanostructured carbon for methanol electrooxidation[J]. Langmuir, 2008, 24(7): 3566-3575. [27] DUAN X, XU J, WEI Z. Metal-free carbon materials for CO2 electrochemical reduction[J]. Adv Mater, 2017, 29(41): 1701784-1701804. [28] DU S, LU Y, MALLADI S K, et al. A simple approach for ptni-mwcnt hybrid nanostructures as high performance electrocatalysts for the oxygen reduction reaction[J]. J Mater Chem A, 2014, 2: 692-698. [29] BO X J, GUO L P. Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution[J] . PCCP, 2013, 15(7): 2459-2465. [30] LIU J, JIAO M, LU L, et al. High performance platinum single atom electrocatalyst for oxygen reduction reaction[J]. Nat Commun, 2017, 8: 15938. [31] JACKSON C,SMITH G T, INWOOD D, et al. Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum[J]. Nat Commun, 2017, 8: 15802. [32] YANG L, CHENG D, XU H, et al. Unveiling the high-activity origin of single-atom iron catalysts for oxygen reduction reaction[J]. Proc Natl Acad Sci, 2018, 115: 6626-6631. |