[1] PLOTKIN S. History of vaccination[J]. Proc Natl Acad Sci 2014, 111 (34): 12283-12287. [2] AKAGI T, BABA M, AKASHI M. Biodegradable nanoparticles as vaccine adjuvants and delivery systems: regulation of immune responses by nanoparticle-based vaccine[M]. Adv Polym Sci, 2012(247): 31-64. [3] GAUSE K T, WHEATLEY A K, CUI J, et al. Immunological principles guiding the rational design of particles for vaccine delivery[J]. ACS Nano, 2017, 11 (1): 54-68. [4] BOSE R J C, KIM M, CHANG J H, et al. Biodegradable polymers for modern vaccine development[J]. J Ind Eng Chem, 2019, 77: 12-24. [5] TRIMAILLE T, LACROIX C, VERRIER B. Self-assembled amphiphilic copolymers as dual delivery system for immunotherapy[J]. Eur J Pharm Biopharm, 2019, 142: 232-239. [6] MASCOLA J R, FAUCI A S. Novel vaccine technologies for the 21st century[J]. Nat Rev Immunol, 2020, 20 (2): 87-88. [7] JIN Y, HE J, FAN K, et al. Ferritin variants: inspirations for rationally designing protein nanocarriers[J]. Nanoscale, 2019, 11(26): 12449-12459. [8] IRVINE D J, READ B J. Shaping humoral immunity to vaccines through antigen-displaying nanoparticles[J]. Curr Opin Immunol, 2020, 65: 1-6. [9] BEYER W E P, PALACHE A M, REPERANT L A, et al. Association between vaccine adjuvant effect and pre-seasonal immunity. systematic review and meta-analysis of randomised immunogenicity trials comparing squalene-adjuvanted and aqueous inactivated influenza vaccines[J]. Vaccine, 2020, 38(7): 1614-1622. [10] WANG N, CHEN M, WANG T. Liposomes used as a vaccine adjuvant-delivery system: from basics to clinical immunization[J]. J Controlled Release, 2019, 303: 130-150. [11] LEE C, JEONG J, LEE T, et al. Virus-mimetic polymer nanoparticles displaying hemagglutinin as an adjuvant-free influenza vaccine[J]. Biomaterials, 2018, 183: 234-242. [12] LIN L C W, HUANG C Y, YAO B Y, et al. Viromimetic STING agonist-loaded hollow polymeric nanoparticles for safe and effective vaccination against middle east respiratory syndrome coronavirus[J]. Adv Funct Mater, 2019, 29(28): 1807616. [13] O′HAGAN D T, OTT G S, DE GREGORIO E, et al. The mechanism of action of MF59-an innately attractive adjuvant formulation[J]. Vaccine, 2012, 30(29): 4341-4348. [14] REED S G, ORR M T, FOX C B. Key roles of adjuvants in modern vaccines[J]. Nat Med, 2013, 19(12): 1597-1608. [15] O′HAGAN D T, OTT G S, VAN NEST G, et al. The history of MF59 (R) adjuvant: a phoenix that arose from the ashes[J]. Expert Rev Vaccines, 2013, 12(1): 13-30. [16] WANG J, CHEN H J, HANG T, et al. Physical activation of innate immunity by spiky particles[J]. Nat Nanotechnol, 2018, 13(11): 1078-1086. [17] FRIES C N, CURVINO E J, CHEN J L, et al. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health[J]. Nat Nanotechnol, 2020: 1-14. [18] XIA Y, WU J, WEI W, et al. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination[J]. Nat Mater, 2018, 17(2): 187-194. [19] JI H, WU G, LI Y, et al. Self-albumin camouflage of carrier protein prevents nontarget antibody production for enhanced LDL-C immunotherapy[J]. Adv Healthcare Mater, 2020, 9(1): 1901203. [20] ZHANG Y N, POON W, SEFTON E, et al. Suppressing subcapsular sinus macrophages enhances transport of nanovaccines to lymph node follicles for robust humoral immunity[J]. ACS Nano, 2020, 14(8): 9478-9490. [21] JIN Z, GAO S, CUI X, et al. Adjuvants and delivery systems based on polymeric nanoparticles for mucosal vaccines[J]. Int J Pharm, 2019, 572: 118731. [22] SHARMA R, AGRAWAL U, MODY N, et al. Polymer nanotechnology based approaches in mucosal vaccine delivery: challenges and opportunities[J]. Biotechnol Adv, 2015, 33(1): 64-79. [23] HAN J, ZHAO D, LI D, et al. Polymer-based nanomaterials and applications for vaccines and drugs[J]. Polymers, 2018, 10(1): 31. [24] NEVAGI R J, SKWARCZYNSKI M, TOTH I. Polymers for subunit vaccine delivery[J]. Eur Polym J, 2019, 114: 397-410. [25] WIBOWO D, JORRITSMA S H T, GONZAGA Z J, et al. Polymeric nanoparticle vaccines to combat emerging and pandemic threats[J]. Biomaterials, 2021, 268: 120597. [26] YOUNES I, RINAUDO M. Chitin and chitosan preparation from marine sources. structure, properties and applications[J]. Mar Drugs, 2015, 13(3): 1133-1174. [27] ELIEH-ALI-KOMI D, HAMBLIN M R. Chitin and chitosan: production and application of versatile biomedical nanomaterials[J]. Int J Adv Res, 2016, 4(3): 411-427. [28] MORAN H B T, TURLEY J L, ANDERSSON M, et al. Immunomodulatory properties of chitosan polymers[J]. Biomaterials, 2018, 184: 1-9. [29] LI X, MIN M, DU N, et al. Chitin, chitosan, and glycated chitosan regulate immune responses: the novel adjuvants for cancer vaccine[J]. Clin Dev Immunol, 2013, 2013: 387023. [30] LI S, FENG X, WANG J, et al. Polymer nanoparticles as adjuvants in cancer immunotherapy[J]. Nano Res, 2018, 11(11): 5769-5786. [31] LEE S B, KIM J Y, KIM K, et al. Encapsulation and release control of fish pathogen utilizing cross-linked alginate networks and clay nanoparticles for use with a potential oral vaccination[J]. Appl Sci, 2020, 10(8): 2679. [32] MÉNARD M, DUSSEAULT J, LANGLOIS G, et al. Role of protein contaminants in the immunogenicity of alginates[J]. J Biomed Mater Res, Part B, 2010, 93B(2): 333-340. [33] MÖNKÄRE J, REZA NEJADNIK M, BACCOUCHE K, et al. IgG-loaded hyaluronan-based dissolving microneedles for intradermal protein delivery[J]. J Controlled Release, 2015, 218: 53-62. [34] GUAN X, CHEN J, HU Y, et al. Highly enhanced cancer immunotherapy by combining nanovaccine with hyaluronidase[J]. Biomaterials, 2018, 171: 198-206. [35] JUNKINS R D, GALLOVIC M D, JOHNSON B M, et al. A robust microparticle platform for a STING-targeted adjuvant that enhances both humoral and cellular immunity during vaccination[J]. J Controlled Release, 2018, 270: 1-13. [36] MOORE K M, BATTY C J, STIEPEL R T, et al. Injectable, ribbon-like microconfetti biopolymer platform for vaccine applications[J]. ACS Appl Mater Interfaces, 2020, 12(35): 38950-38961. [37] LEE S, STUBELIUS A, HAMELMANN N, et al. Inflammation-responsive drug-conjugated dextran nanoparticles enhance anti-inflammatory drug efficacy[J]. ACS Appl Mater Interfaces, 2018, 10(47): 40378-40387. [38] ZHANG W, AN M, XI J, et al. Targeting CpG adjuvant to lymph node via dextran conjugate enhances antitumor immunotherapy[J]. Bioconjugate Chem, 2017, 28(7): 1993-2000. [39] CHEN N, JOHNSON M M, COLLIER M A, et al. Tunable degradation of acetalated dextran microparticles enables controlled vaccine adjuvant and antigen delivery to modulate adaptive immune responses[J]. J Controlled Release, 2018, 273: 147-159. [40] BARTNIKOWSKI M, DARGAVILLE T R, IVANOVSKI S, et al. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment[J]. Prog Polym Sci, 2019, 96: 1-20. [41] SINHA V R, BANSAL K, KAUSHIK R, et al. Poly-ε-caprolactone microspheres and nanospheres: an overview[J]. Int J Pharm, 2004, 278(1): 1-23. [42] LABET M, THIELEMANS W. Synthesis of polycaprolactone: a review[J]. Chem Soc Rev, 2009, 38(12): 3484-3504. [43] VEMIREDDY S, MADHURANTAKAM P P, TALATI M N, et al. Cationic pH-responsive polycaprolactone nanoparticles as intranasal antigen delivery system for potent humoral and cellular immunity against recombinant tetravalent dengue antigen[J]. ACS Appl Bio Mater, 2019, 2(11): 4837-4846. [44] PAN Y, QI Y, SHAO N, et al. Amino-modified polymer nanoparticles as adjuvants to activate the complement system and to improve vaccine efficacy in vivo[J]. Biomacromolecules, 2019, 20(9): 3575-3583. [45] ANDERSON J M, SHIVE M S. Biodegradation and biocompatibility of PLA and PLGA microspheres[J]. Adv Drug Delivery Rev, 2012, 64: 72-82. [46] GHITMAN J, BIRU E I, STAN R, et al. Review of hybrid PLGA nanoparticles: future of smart drug delivery and theranostics medicine[J]. Mater Des, 2020, 193: 108805. [47] LIN L C W, CHATTOPADHYAY S, LIN J C, et al. Advances and opportunities in nanoparticle- and nanomaterial-based vaccines against bacterial infections[J]. Adv Healthcare Mater, 2018, 7(13): 1701395. [48] TZENG S Y, MCHUGH K J, BEHRENS A M, et al. Stabilized single-injection inactivated polio vaccine elicits a strong neutralizing immune response[J]. Proc Natl Acad Sci, 2018, 115(23): E5269. [49] JAHAN S T, SADAT S M A, YARAHMADI M, et al. Potentiating antigen specific immune response by targeted delivery of the PLGA-based model cancer vaccine[J]. Mol Pharmaceutics, 2019, 16(2): 498-509. [50] ZHU Q, TALTON J, ZHANG G, et al. Large intestine targeted, nanoparticle-releasing oral vaccine to control genitorectal viral infection[J]. Nat Med, 2012, 18(8): 1291-1296. [51] TEASDALE I, BRÜGGEMANN O. Polyphosphazenes: multifunctional, biodegradable vehicles for drug and gene delivery[J]. Polymers, 2013, 5(1): 161-187. [52] ANDRIANOV A K, MARIN A, WANG R, et al. In vivo and in vitro potency of polyphosphazene immunoadjuvants with hepatitis C virus antigen and the role of their supramolecular assembly[J]. Mol Pharmaceutics, 2020. [53] BASU A, DOMB A J. Recent advances in polyanhydride based biomaterials[J]. Adv Mater, 2018, 30(41): 1706815. [54] ROSS K, ADAMS J, LOYD H, et al. Combination nanovaccine demonstrates synergistic enhancement in efficacy against influenza[J]. ACS Biomater Sci Eng, 2016, 2(3): 368-374. [55] PARK S B, SUNG M H, UYAMA H, et al. Poly(glutamic acid): production, composites, and medical applications of the next-generation biopolymer[J]. Prog Polym Sci, 2021, 113: 101341. [56] YANG J, SHIM S-M, NGUYEN T Q, et al. Poly-γ-glutamic acid/chitosan nanogel greatly enhances the efficacy and heterosubtypic cross-reactivity of H1N1 pandemic influenza vaccine[J]. Sci Rep, 2017, 7(1): 44839. [57] SHI C, HE Y, FENG X, et al. ε-Polylysine and next-generation dendrigraft poly-L-lysine: chemistry, activity, and applications in biopharmaceuticals[J]. J Biomater Sci Polym Ed, 2015, 26(18): 1343-1356. [58] AVINASH PATIL N, KANDASUBRAMANIAN B. Functionalized polylysine biomaterials for advanced medical applications: a review[J]. Eur Polym J, 2021: 110248. [59] LIM J W, NA W, KIM H O, et al. Cationic poly(amino acid) vaccine adjuvant for promoting both cell-mediated and humoral immunity against influenza virus[J]. Adv Healthcare Mater, 2019, 8(2): 1800953. [60] BETTENCOURT A, ALMEIDA A J. Poly(methyl methacrylate) particulate carriers in drug delivery[J]. J Microencapsulation, 2012, 29(4): 353-367. [61] LIU T Y, HUSSEIN W M, GIDDAM A K, et al. Polyacrylate-based delivery system for self-adjuvanting anticancer peptide vaccine[J]. J Med Chem, 2015, 58(2): 888-896. [62] LI A W, SOBRAL M C, BADRINATH S, et al. A facile approach to enhance antigen response for personalized cancer vaccination[J]. Nat Mater, 2018, 17(6): 528-534. [63] YE L, SCHNEPF D, BECKER J, et al. Interferon-λ enhances adaptive mucosal immunity by boosting release of thymic stromal lymphopoietin[J]. Nat Immunol, 2019, 20(5): 593-601. [64] STYLIANOU E, PAUL M J, RELJIC R, et al. Mucosal delivery of tuberculosis vaccines: a review of current approaches and challenges[J]. Expert Rev Vaccines, 2019, 18(12): 1271-1284. |