应用化学 ›› 2020, Vol. 37 ›› Issue (3): 340-349.DOI: 10.11944/j.issn.1000-0518.2020.03.190175

• 研究论文 • 上一篇    下一篇

Gd3+掺杂ZnO的制备及其性能

张媛a,徐嘉鑫a,邓洪权b,蒋琪英a*()   

  1. 西南科技大学 a 材料科学与工程学院
    西南科技大学 b 工程技术中心 四川 绵阳 621010
  • 收稿日期:2019-06-21 接受日期:2019-09-20 出版日期:2020-03-01 发布日期:2020-03-10
  • 通讯作者: 蒋琪英
  • 基金资助:
    四川省大学生创新创业训练(S201910619032)项目资助

Preparation and Performance of Gd3+-Doped ZnO

ZHANG Yuana,XU Jiaxina,DENG Hongquanb,JIANG Qiyinga*()   

  1. a School of Materials Science and Engineering
    b Center of Engineering Technology,Southwest University of Science and Technology,Mianyang,Sichuan 621010,China
  • Received:2019-06-21 Accepted:2019-09-20 Published:2020-03-01 Online:2020-03-10
  • Contact: JIANG Qiying
  • Supported by:
    Supported by Sichuan's Training Program of Innovation and Entrepreneurship for Undergraduate(No.S201910619032).

摘要:

为提高ZnO的光催化性和稳定性,扩展对光的吸收范围,以乙二胺四乙酸(H4EDTA)为配体形成配位前驱体,通过低温热分解配位前驱体法制备了Gd3+掺杂ZnO复合物Zn1-xGdxO2(x=0~0.1)纳米颗粒。 采用X射线粉末衍射(XRD)、红外光谱法(FT-IR)、扫描电子显微镜(SEM)、荧光光谱法(FL)、紫外可见漫反射光谱法(UV-Vis DRS)、交流阻抗(EIS)以及动态光电流响应(i-t)等多种手段研究掺杂比例对氧化锌物相、表面形貌、光学性以及光电响应性等的影响。 结果表明,Gd3+掺杂摩尔分数低于3%时,产物为单相纤锌矿ZnO,提高掺杂比例(>3%)不仅使ZnO晶格萎缩,同时还出现少量Gd2O3第二相,且晶粒随掺杂摩尔分数的增加而降低。 Gd3+掺杂使ZnO能带结构发生改变,其价带、导带和带隙等各值都随着掺杂摩尔分数的增加而降低。 I-t结果表明,适量掺杂可提高ZnO的光电响应能力,其中掺杂摩尔分数1%所得ZnO的光电流密度最大(10 mA/m2)。甲基橙(MO)的光降解结果显示,Gd3+掺杂能提高ZnO的催光化性,其中1%掺杂对ZnO的催化性提高最大。 最后还对ZnO的催化选择性和耐酸碱性进行了简单研究。

关键词: 氧化锌, 光催化剂, Gd3+, 掺杂, 光电响应

Abstract:

In order to improve photocatalytic activity and acid-resistant alkalinity of ZnO and expand the absorption range of light, nanosized ZnO particles doped with Gd3+ (Zn1-xGdxO2(x=0~0.1)) were synthesized by thermal decomposition of the coordinated precursor, in which ethylenediamine tetraacetic acid(H4EDTA) is the ligand. Effects of the doping amount of Gd3+ on the structure, phase, morphology, optical properties and photo-electrical behaviors of ZnO were studied by X-ray diffraction (XRD) spectrometry, ultraviolet-visible diffuse reflection spectroscopy (UV-Vis DRS), Fourier transform infrared (FT-IR) spectroscopy, flurescence spectroscopy (FL), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), dynamic photoelectrical current curve (i-t), etc. XRD results show that when the amount of Gd3+ is below 3%, there is a single phase of ZnO with hexagonal wurtzite structure. With the increase of Gd3+ doping(>3%), a little bit of second phase of Gd2O3 shows up and the grain size of ZnO is reduced. From i-t results, Gd3+ doping amount of 1% exhibits the biggest current density of 10 mA/m2. With the increase of Gd3+ doping, the band structure of ZnO is changed, the value of conduction band (CB), valence band (VB) and band-gap value (Eg) of ZnO are all reduced. At the same time, photo-degradation results of methyl orange (MO) reveal that Gd3+ doping can enhance the photocatalytic activity of ZnO, and the suitable amount is 1%. The catalytic selectivity and acid-resistant alkalinity of ZnO and Gd-doped ZnO were also studied simply.

Key words: ZnO, photo-catalysis, Gd3+, doping, photoelectric response