[1] | Sheng T,Xu Y F,Jiang Y X,et al. Structure Design and Performance Tuning of Nanomaterials for Electrochemical Energy Conversion and Storage[J]. Acc Chem Res,2016,49(11):2569-2577. | [2] | Yu L,Wu H B,Lou X W.Self-Templated Formation of Hollow Structures for Electrochemical Energy Applications[J]. Acc Chem Res,2017,50(2):293-301. | [3] | Hu X,Zhang W,Liu X,et al. Cheminform Abstract:Nanostructured Mo-based Electrode Materials for Electrochemical Energy Storage[J]. Chem Soc Rev,2015,44(8):2376-2404. | [4] | Zhang K,Han X,Hu Z,et al. Nanostructured Mn-based Oxides for Electrochemical Energy Storage and Conversion[J]. Chem Soc Rev,2015,44(3):699-728. | [5] | Shi Y,Peng L,Ding Y,et al. Nanostructured Conductive Polymers for Advanced Energy Storage[J]. Chem Soc Rev,2015,44(19):6684-6696. | [6] | Liu Z,Xu J,Chen D,et al. Flexible Electronics Based on Inorganic Nanowires[J]. Chem Soc Rev,2015,44(1):161-192. | [7] | Guo Z,Chen L,Wang Y,et al. Aqueous Lithium-Ion Batteries Using Polyimide-activated Carbon Composites Anode and Spinel LiMn2O4 Cathode[J]. ACS Sustain Chem Eng,2017,5(2):1503-1508. | [8] | Katiyar R K,Singhal R,Asmar K,et al. High Voltage Spinel Cathode Materials for High Energy Density and High Rate Capability Li-Ion Rechargeable Batteries[J]. J Power Sources,2009,194(1):526-530. | [9] | Yu W,Cao C,Zhang J,et al. Hierarchical LiMn2O4 Hollow Cubes with Exposed {111} Planes as High-power Cathodes for Lithium-Ion Batteries[J]. ACS Appl Mater Interfaces,2016,8(30):19567-19572. | [10] | Warburton R E,Iddir H,Curtiss L A,et al. Thermodynamic Stability of Low and High Index Spinel LiMn2O4 Surface Terminations[J]. ACS Appl Mater Interfaces,2016,8(17):11108-11121. | [11] | Marchini F,Rubi D,Pozo M D,et al. Surface Chemistry and Lithium-Ion Exchange in LiMn2O4 for the Electrochemical Selective Extraction of LiCl from Natural Salt Lake Brines[J]. J Phys Chem C,2016,120(29):15875-15883. | [12] | Lu J,Zhou C,Liu Z,et al. LiMn2O4, Cathode Materials with Large Porous Structure and Radial Interior Channels for Lithium Ion Batteries[J]. Electrochim Acta,2016,212:553-560. | [13] | YU Bingchuan,WU Hongte,YANG Guangzhong.High Temperature Modification of LiMn2O4 Cathode Materials for Lithium Ion Batteries[J]. Chinese J Appl Chem,2006,23(4):378-381(in Chinese). 于兵川,吴洪特,杨光忠. 锂离子电池LiMn2O4正极材料的高温改性[J]. 应用化学,2006,23(4):378-381. | [14] | Liu Z,Han K,Chenwiegart Y K,et al. X-ray Nanotomography Analysis of the Microstructural Evolution of LiMn2O4 Electrodes[J]. J Power Sources,2017,360:460-469. | [15] | Kitta M,Kohyama M.Stability of the LiMn2O4 Surface in a LiPF6-based Non-aqueous Electrolyte Studied by In-Situ Atomic Force Microscopy[J]. Jpn J Appl Phys,2016,55(6):065801. | [16] | Wang Y,Chen L,Wang Y,et al. Cycling Stability of Spinel LiMn2O4, with Different Particle Sizes in Aqueous Electrolyte[J]. Electrochim Acta,2015,173:178-183. | [17] | Zhang C,Liu X,Su Q,et al. Enhancing Electrochemical Performance of LiMn2O4 Cathode Material at Elevated Temperature by Uniform Nano-sized TiO2 Coating[J]. ACS Sustain Chem Eng,2016,5(1):640-647. | [18] | LIU Haowen,MAI Shuai,HU Yumei,et al. Effects of Ion Doping in Different Oxidation States on the Electrochemical Performance of LiMn2O4[J]. Chinese J Appl Chem,2007,24(9):1066-1070(in Chinese). 刘浩文,买帅,胡玉梅,等. 不同氧化态的离子掺杂对LiMn2O4电化学性能的影响[J]. 应用化学,2007,24(9):1066-1070. | [19] | Ram P,Singhal R,Choudhary G,et al. On the Key Role of Dy3+, in Spinel LiMn2O4, Cathodes for Li-Ion Rechargeable Batteries[J]. J Electroanal Chem,2017,802:94-99. | [20] | Zhu X,Wu X,Doan T N L,et al.Binder-free Flexible LiMn2O4/Carbon Nanotube Network as High Power Cathode for Rechargeable Hybrid Aqueous Battery[J]. J Power Sources,2016,326:498-504. | [21] | Wang J,Liu W,Liu S,et al. Biomass Derived Fabrication of a Novel Sea Cucumber-like LiMn2O4/C Composite with a Hierarchical Porous Structure as the Cathode for Lithium-Ion Batteries[J]. Electrochim Acta,2016,188:645-652. | [22] | Şeyma Karaal,Köse H,Aydin A O,et al. The Effect of LiBF4, Concentration on the Discharge and Stability of LiMn2O4, Half Cell Li Ion Batteries[J]. Mater Sci Semicond Process,2015,38:397-403. | [23] | Susanto D,Kim H,Kim J Y,et al. Effect of (Mg,Al) Double Doping on the Thermal Decomposition of LiMn2O4, Cathodes Investigated by Time-resolved X-ray Diffraction[J]. Curr Appl Phys,2015,15:S27-S31. | [24] | Asakura D,Hosono E,Niwa H,et al. Operando, Soft X-ray Emission Spectroscopy of LiMn2O4, Thin Film Involving Li-Ion Extraction/Insertion Reaction[J]. Electrochem Commun,2015,50(5):93-96. | [25] | Leifer N,Schipper F,Erickson E M,et al. Studies of Spinel-to-Layered Structural Transformations in LiMn2O4 Electrodes Charged to High Voltages[J]. J Phys Chem C,2017,121(17):9120-9130. | [26] | Zhu C,Nobuta A,Saito G,et al. Solution Combustion Synthesis of LiMn2O4, Fine Powders for Lithium Ion Batteries[J]. Adv Powder Technol,2014,25(1):342-347. |
|