应用化学 ›› 2018, Vol. 35 ›› Issue (11): 1357-1363.DOI: 10.11944/j.issn.1000-0518.2018.11.180235

• 研究论文 • 上一篇    下一篇

MnOX-C@SiO2核壳微球的制备及催化性能

孟庆男a*(),杜路路a,汤玉斐a,赵康a,赵朗b   

  1. a西安理工大学材料科学与工程学院 西安 710048
    b中国科学院长春应用化学研究所,稀土资源利用国家重点实验室 长春 130022
  • 收稿日期:2018-07-05 接受日期:2018-08-27 出版日期:2018-10-31 发布日期:2018-10-31
  • 通讯作者: 孟庆男
  • 基金资助:
    国家自然科学基金(51502241)项目资助

Preparation and Catalytic Properties of MnOX-C@SiO2 Core-Shell Particles

MENG Qingnana*(),DU Lulua,TANG Yufeia,ZHAO Kanga,ZHAO Langbc   

  1. aSchool of Materials Science & Engineering,Xi'an University of Technology,Xi'an 710048,China;
    bState Key Laboratory of Rare Earth Resource Utilization,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences,Changchun 130022,China
  • Received:2018-07-05 Accepted:2018-08-27 Published:2018-10-31 Online:2018-10-31
  • Contact: MENG Qingnan
  • Supported by:
    Supported by the National Natural Science Foundation of China(No.51502241)

摘要:

为了制备高性能的Fenton反应催化剂以降解水中污染物,采用SiO2包覆聚丙烯酸-二氧化锰复合胶团(PAA-Mn@SiO2)然后碳化的方法,制备了以氧化锰-碳复合物为核,SiO2为壳的核壳型纳米催化剂(MnOX-C@SiO2),该方法简单易行。 通过X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、比表面积等测试手段对产物进行了分析。 结果表明,MnOX-C@SiO2中形成了对Fenton反应具有高催化活性的低价氧化锰(Mn3O4和MnO)。 此外,SiO2壳层能有效防止氧化锰在碳化过程中长大并阻止产物聚集,其内部的碳组分还能进一步稳定氧化锰纳米粒子并促进有机污染物的富集。 MnOX-C@SiO2的比表面积为317.3 m2/g,在水中具有良好的分散性,在Fenton反应催化降解亚甲基蓝(MB)溶液的过程中,仅经过40 min,降解率就可达到96.8%。

关键词: 氧化锰, 碳, 二氧化硅, 核壳结构, 催化

Abstract:

To prepare catalysts with high activity in the Fenton reaction toward the decomposition of pollutants in water, SiO2 coated polyacrylate and manganese dioxide composite colloids(PAA-Mn@SiO2) were carbonized under N2 atmosphere. The synthesis process is very facile and effective. The as-prepared manganese oxides-carbon@SiO2 core shell type catalyst (MnOX-C@SiO2) was characterized by X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS), scanning electron microscope(SEM), transmission electron microscope(TEM) and the specific surface area analysis. The results indicate that low-valenced manganese oxides(Mn3O4 and MnO) are formed in the MnOX-C@SiO2 due to the reductive atmosphere formed by the pyrolysis of PAA, which is beneficial for the enhancement of the catalytic performance in the Fenton reaction. In addition, the SiO2 shell not only effectively prevents the inside manganese oxide nanoparticles from getting larger but also stops the product from aggregating during carbonation. The carbon component in the core can further stabilize the manganese oxide nanoparticles and promote the enrichment of organic pollutants. The specific surface area of the MnOX-C@SiO2 is 317.3 m2/g, which is well dispersed in water. For the catalytic degradation of methylene blue(MB) solution via the Fenton process, the degradation rate of MB can reach ~96.8% only after 40 min.

Key words: manganese oxide, carbon, silica, core-shell structure, catalysis