应用化学 ›› 2018, Vol. 35 ›› Issue (8): 956-962.DOI: 10.11944/j.issn.1000-0518.2018.08.180145

• 研究论文 • 上一篇    下一篇

MoS2@Co9S8蛋黄壳复合材料的制备及其电化学性能

王换换a,卢松涛a,秦伟b,吴晓宏a*   

  1. 哈尔滨工业大学a化工与化学学院, 工业和信息化部新能源转换与储存关键材料技术重点实验室
    b材料学院 哈尔滨 150001
  • 收稿日期:2018-05-02 接受日期:2018-06-25 出版日期:2018-07-24 发布日期:2018-07-24
  • 通讯作者: 吴晓宏
  • 基金资助:
    国家自然科学基金项目(51572060,51502062)资助

Preparation and Electrochemical Performance of MoS2@Co9S8 Yolk-Shell Nanocomposites

WANG Huanhuana,LU Songtaoa,QIN Weib,WU Xiaohonga*   

  1. aMIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage,School of Chemistry and Chemical Engineering
    bSchool of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China
  • Received:2018-05-02 Accepted:2018-06-25 Published:2018-07-24 Online:2018-07-24
  • Contact: WU Xiaohong
  • Supported by:
    Supported by the National Natural Science Foundation of China(No.51572060, No.51502062)

摘要:

近年来,过渡金属硫化物已成为锂离子电池理想的负极材料之一。 其中,MoS2具有的独特二维层状结构使得其能够让Li+在电化学反应中可逆地嵌入和脱出,且拥有较高的理论储锂容量(670 mA·h/g)而受到广泛关注。 但MoS2作为典型的半导体材料,电导率低下且在锂离子嵌入-脱出的过程中会发生较大程度的体积收缩膨胀,所以具有较差的倍率性能和循环性能,限制了其商业化的使用。 很多研究通过优化MoS2结构或与其它导电材料复合来克服上述缺陷。 Co9S8具有较高的电导率,但由于其迟缓的离子传输动力学表现出低的首次库仑效率及较差的循环稳定性,基于此,将MoS2与Co9S8结合利用二者协同效应来提高复合材料的电化学性能。 本文采用溶剂热与气相沉积法制备得MoS2@Co9S8蛋黄结构复合材料电极。 MoS2与Co9S8均匀分布于整个蛋黄壳结构,这有利于电子和锂离子的快速传输,从而有效地提升了电极的循环性能和倍率性能。 其次,蛋黄壳的空穴有效缓解了在充放电过程中的体积膨胀,及其活性位点有效缩短了离子和电子的传输距离,提高了电极反应动力学并获得高比容量。 MoS2@Co9S8蛋黄壳复合物的循环性能与倍率性能在同等条件下均高于Co9S8和MoS2,在电流密度为0.2 A/g下循环500圈后,放电容量仍能维持在631.5 mA·h/g。

关键词: Co9S8, MoS2, MoS2@Co9S8, 锂离子电池, 负极材料, 蛋黄壳结构

Abstract:

Transition metal sulfides have emerged as a desirable anode material for lithium-ion batteries in recent years. Among them, molybdenum disulfide(MoS2) has received intensive research attention because of its unique 2D-layered structure, which can provide an effective diffusion path for the intercalation and exfoliation of lithium ions during the electrochemical reaction process and high theoretical specific capacities(670 mA·h/g). However, as an typical semiconductor material, MoS2 suffers from the inherent low electrical conductivity and large volumetric expansion/shrinkage upon cycling, which will result in poor rate capability and rapid capacity decay that limit its large-scale applications. Much efforts have been devoted to passing these problems by optimizing MoS2 materials to nanostructures and integrating MoS2 with other conductive materials. Cobalt sulfide(Co9S8) is a metallic transition metal sulfide with relatively higher electrical conductivity but shows inferior electrochemical performance, which is possibly related to its sluggish ion transport kinetics. In this regard, the combination of MoS2 and Co9S8 into rationally designed hybrid architectures may offer synergistic advantages, which manifest overall structural merits over the individual component. Herein, we report the synthesis of uniform MoS2@Co9S8 yolk-shell spheres via solvothermal together with chemical vapor deposition method. The MoS2 and Co9S8 are homogeneously distributed throughout the entire yolk-shell spheres, which leads to a faster electron and Li-ion transport and effectively improves the cycling stability and reversible capacity. The void space in the yolk-shell structure can efficiently cushion the volume change during the discharge/charge process. The uniform mixing of the Co9S8 and MoS2 nanocrystals can also facilitate rapid ion/electron transportation and help to stabilize the cycling performance. Therefore, the as-prepared MoS2@Co9S8 yolk-shell spheres deliver superior Li storage performance with good rate capability and stable cycling performance. Especially for the lithium ion battery application, the MoS2@Co9S8 yolk-shell spheres show a remarkably reversible capacity of about 631.5 mA·h/g after 500th cycles at a current density of 0.2 A/g.

Key words: Co9S8, MoS2, MoS2@Co9S8, lithium ion batteries, anode material, yolk-shell structure