| [1] |
WANG Y, MA Z, WANG J, et al. Hierarchical CaIn2S4/NiTiO3 heterojunction enhanced removal of hexavalent chromium powered by visible irradiation[J]. Mater Sci Semicond Process, 2025, 190: 109375.
|
| [2] |
YU H, TAN H, CHEN N, et al. Facile fabrication of heavily N-doped Zn0.67Cd0.33S nanocatalyst with congenital sulfur vacancies for efficient photocatalytic reduction of water and hexavalent chromium[J]. J Photochem Photobiol A, 2024, 457: 115927.
|
| [3] |
KAR S, GHOSH S, PAL T. MoS2-CdS composite for photocatalytic reduction of hexavalent chromium and thin film optoelectronic device applications[J]. Sci Rep, 2024, 14(1): 18674.
|
| [4] |
PONSINGH A B, RAJAGOPALAN V. Design and optimization of a photocatalytic system for Cr(Ⅵ) ion reduction using ZnO-NiO nanocomposite by response surface method and their antibacterial studies[J]. Ionics, 2024, 30(10): 6631-6651.
|
| [5] |
DAI Y, YAN B, LI Y, et al. Efficient photocatalytic removal of Cr6+ by steel slag loaded cellulose nanofiber aerogel[J]. Mater Chem Phys, 2025, 332: 130191.
|
| [6] |
QIN S, XU R, JIN Q, et al. Efficient photocatalytic reduction of hexavalent chromium by NiCo2S4/BiOBr heterogeneous photocatalysts[J]. Coatings, 2024, 14(12): 1492.
|
| [7] |
CAO S, LOW J, YU J, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Adv Mater, 2015, 27(13): 2150-2176.
|
| [8] |
ONG W J, TAN L L, NG Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability?[J]. Chem Rev, 2016, 116(7): 7159-7329.
|
| [9] |
张永辉, 谢诗宇, 刘明明, 等. 功能化Cu2O光催化研究进展[J]. 分子科学学报, 2022, 38(1): 28-36.
|
|
ZHANG Y H, XIE S Y, LIU M M, et al. Research progress of functionalized Cu2O photocatalysis[J]. J Mol Sci, 2022, 38(1): 28-36.
|
| [10] |
PATTNAIK P S, MOHANTY A U, PARIDA K. A timely update on g-C3N4-based photocatalysts towards the remediation of Cr(Ⅵ) in aqueous streams[J]. RSC Adv, 2024, 14(49): 36816-36834.
|
| [11] |
LU P, ZHAO H, LI Z, et al. High photocatalytic activity of g-C3N4/CdZnS/MoS2 heterojunction for hydrogen production[J]. Int J Hydrogen Energy, 2024, 82: 776-785.
|
| [12] |
CHEN M, JIA Y, LI H, et al. Enhanced pyrocatalysis of the pyroelectric BiFeO3/g-C3N4 heterostructure for dye decomposition driven by cold-hot temperature alternation[J]. J Adv Ceram, 2021, 10(2): 1-9.
|
| [13] |
LIU X, MA L, WANG X, et al. Structuring dual Z-scheme heterojunction and boosting surface reaction by bifunctional NiCoP modified TiO2/g-C3N4 for improving the photocatalytic activity[J]. Int J Hydrogen Energy, 2024, 62: 127-139.
|
| [14] |
WARY R R, NARZARY M, NIKHIL S, et al. Rational construction of carbon-rich g-C3N4 wrapped over CePO4 nanoro ds: oxygen vacancy mediated 1D/2D Z-scheme photocatalyst towards removal of congo red dye[J]. Colloids Surf A, 2024, 684: 133142.
|
| [15] |
张永才, 侯振华, 吴迪, 等. α-Fe2O3/g-C3N4复合物的合成及光催化还原Cr(Ⅵ)的实验设计[J]. 实验室研究与探索, 2023, 42(9): 6-11.
|
|
ZHANG Y C, HOU Z H, WU D, et al. Design on the synthesis of α-Fe2O3/g-C3N4 composite and its photocatalytic reduction of Cr(Ⅵ)[J]. Res Explo Lab, 2023, 42(9): 6-11.
|
| [16] |
于会娟, 朱闻奇, 李烨, 等. 柠檬酸改性g-C3N4的制备及其光催化还原去除水体中Cr(Ⅵ)的实验研究[J]. 电镀与涂饰, 2023, 42(15): 78-83.
|
|
YU H J, ZHU W Q, LI Y, et al. Preparation of citric acid-modified g-C3N4 and experimental study on its photocatalytic reduction for Cr(Ⅵ) removal in water[J]. Electroplat Finish, 2023, 42(15): 78-83.
|
| [17] |
ZHAO X, MA X, WANG B, et al. Preparation of g-C3N4/PVDF composites membrane for boosting photocatalytic activity in reduction of hexavalent chromium[J]. J Taiwan Inst Chem Eng, 2025, 168: 105894.
|
| [18] |
WANG J, SUN S, ZHOU R, et al. A review: synthesis, modification and photocatalytic applications of ZnIn2S4[J]. J Mater Sci Technol, 2021, 78: 1-19.
|
| [19] |
DHIMAN P, SHARMA J, DAWI E A, et al. Integration of Bi2Ti2O7 and CaIn2S4 to form a Z-scheme heterojunction with enhanced charge transfer for superior photocatalytic activity[J]. Ind Eng Chem Res, 2024, 63(35): 14.
|
| [20] |
甘建昌, 胡海平, 苏明, 等. 金属硫化物/g-C3N4异质结的构建及其光催化性能改善与应用[J]. 材料导报, 2022, 36(10): 5-14.
|
|
GAN J C, HU H P, SU M, et al. Construction, photocatalytic performance lmprovement andapplication of metal sulfide/g-C3N4 heterojunctions[J]. Mater Rep, 2022, 36(10): 5-14.
|
| [21] |
WANG D Y, CAO M J, FENG Y, et al. Self-assembly of ZnIn2S4 nanosheets on g-C3N4 nanotubes for efficient photocatalytic reduction of Cr(Ⅵ)[J]. Micropor Mesopor Mater, 2022, 330(Suppl C): 111598.
|
| [22] |
YANG L, ZHAO J, WANG Z, et al. Facile construction of g-C3N4/ZnIn2S4 nanocomposites for enhance Cr(Ⅵ) photocatalytic reduction[J]. Spectrochim Acta Part A, 2022, 276(Suppl C): 121184.
|
| [23] |
HU J, LU S, MA J, et al. Composite of g-C3N4/ZnIn2S4 for efficient adsorption and visible light photocatalytic reduction of Cr(Ⅵ)[J]. Environ Sci Pollut Res Int, 2022, 29(50): 76404-76416.
|
| [24] |
CIRENA Z, NIE Y, LI Y, et al. Fe doped g-C3N4 composited ZnIn2S4 promoting Cr(Ⅵ) photoreduction[J]. Chin Chem Lett, 2023, 34(4): 462-467.
|
| [25] |
XU SY, DAI J,YANG J, et al. Facile synthesis of novel CaIn2S4/ZnIn2S4 composites with efficient performance for photocatalytic reduction of Cr(Ⅵ) under simulated sunlight irradiation[J]. Nanomaterials, 2018, 8(7): 472.
|
| [26] |
WANG Y Y, JIA S J, DING S Q, et al. Development of palygorskite-CaIn2S4 composite for rapid Cr(Ⅵ) reduction under visible light[J]. J Environ Sci, 2025, 156: 562-575.
|
| [27] |
胡杰. ZnIn2S4基复合材料光催化还原六价铬及其机理研究[D]. 常州: 常州大学, 2022.
|
|
HU J. Photocatalytic reduction and mechanism of hexavalent chromium by ZnIn2S4 based composites[D]. Changzhou: Changzhou University, 2022.
|
| [28] |
ARULPRAKASH G, VIJAYARAGHAVAN R. Charge-separated 3D/2D layered heterojunction of NiNb2O6/E-gC3N4 as an efficient photocatalyst for photo-reduction of Cr6+ and photo-oxidation of dyes under visible and sunlight[J]. Appl Surf Sci, 2025, 684: 161938.
|
| [29] |
GAO Z, CHEN K, WANG L, et al. Aminated flower-like ZnIn2S4 coupled with benzoic acid modified g-C3N4 nanosheets via covalent bonds for ameliorated photocatalytic hydrogen generation[J]. Appl Catal B, 2019, 268: 118462.
|
| [30] |
QIU P X, YAO J H, CHEN H, et al. Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4 photocatalyst[J]. J Hazard Mater, 2016, 317: 158-168.
|
| [31] |
YE X J, ZHU T T, HUI Z Z, et al. Revealing the transfer mechanisms of photogenerated charge carriers over g-C3N4/ZnIn2S4 composite: a model study for photocatalytic oxidation of aromatic alcohols with visible light[J]. J Catal, 2021, 401: 149-159.
|
| [32] |
DENG X, WANG D, LI H, et al. Boosting interfacial charge separation and photocatalytic activity of 2D/2D g-C3N4/ZnIn2S4 S-scheme heterojunction under visible light irradiation[J]. J Alloy Compd, 2022, 894: 162209.
|
| [33] |
胡译文. ZnIn2S4基光催化材料的设计、可控构建及性能强化机制研究[D]. 北京: 北京化工大学, 2024.
|
|
HU Y W. Design, controllable construction,and performance enhancement mechanism research of ZnIn2S4-based photocatalytic materials[D]. Beijing: Beijing University of Chemical Technology, 2024.
|
| [34] |
DELI J, JIE L, CHAOSHENG X, et al. Two-dimensional CaIn2S4/g-C3N4 heterojunction nanocomposite with enhanced visible-light photocatalytic activities: interfacial engineering and mechanism insight[J]. ACS Appl Mater Interfaces, 2015, 7(34): 19234-19242.
|
| [35] |
WU Z Y, LU Q Y, FU W H, et al. Fabrication of mesoporous Al-SBA-15 as a methylene blue capturer via a spontaneous infiltration route[J]. New J Chem, 2015, 39(2): 985-993.
|