| 1 |
CAMPOS-MARTIN J M, BLANCO-BRIEVA G, FIERRO J, et al. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process[J]. Angew Chem Int Ed, 2006, 45(42): 6962-6984.
|
| 2 |
FUKUZUMI S Y, YAMADA Y, KARLIN K D. Electrochim hydrogen peroxide as a sustainable energy carrier: electrocatalytic production of hydrogen peroxide and the fuel cell[J]. Electrochim Acta, 2012, 82: 493-511.
|
| 3 |
KOFUJI Y, ISOBE Y, SHIRAISHI Y, et al. Hydrogen peroxide production on a carbon nitride-boron nitride-reduced graphene oxide hybrid photocatalyst under visible light[J]. ChemCatChem, 2016, 138: 10019-10025.
|
| 4 |
HU H L, ZENG X K, ZHANG X W. Production of hydrogen peroxide by photocatalytic processes[J]. Angew Chem Int Ed, 2020, 59: 17356-17376.
|
| 5 |
TENG Z Y, ZHANG Q T, YANG H B, et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide[J], Nat Catal, 2021, 4: 374-384.
|
| 6 |
CAMPOS-MARTIN J M, BLANCO-BRIEVA G, FIERRO J L. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process[J]. Angew Chem Int Ed, 2006, 45: 6962-6984.
|
| 7 |
TAN H, ZHOU P, LIU M X, et al. Photocatalysis of water into hydrogen peroxide over an atomic Ga-N5 site[J]. Nat Synthesis, 2023, 2: 557-563.
|
| 8 |
YANG S. Toward the decentralized electrochemical production of H2O2: a focus on the catalysis[J]. ACS Catal, 2018, 8: 4064-4081.
|
| 9 |
SANTOS G O S, CORDEIRO-JUNIOR P J M, SOUTM R S, et al. Recent advances in H2O2 electrosynthesis based on the application of gas diffusion electrodes: challenges and opportunities[J]. Environ Electrochem, 2022, 36: 101124.
|
| 10 |
ZHAN W, JI L, WANG X, et al. A continuous-flow synthesis of primary amides from hydrolysis of nitriles using hydrogen peroxide as oxidant[J]. Tetrahedron, 2018, 74: 1527-1532.
|
| 11 |
KSIBI M. Chemical oxidation with hydrogen peroxide for domestic wastewater treatment[J]. Chem Eng J, 2006, 119: 161-165.
|
| 12 |
CHEN Z, YAO D, CHU C C, et al. Photocatalytic H₂O₂ production systems: design strategies and environmental applications[J]. Chem Eng J, 2023, 451: 138489.
|
| 13 |
HOU H, ZENG X, ZHANG X. Production of hydrogen peroxide by photocatalytic processes[J]. Angew Chem Int Ed, 2020, 59: 17356-17376.
|
| 14 |
FUKUZUMI S. Artificial photosynthesis for production of hydrogen peroxide and its fuel cells[J]. BBA-Bioenergetics, 2016, 1857(5): 604-611.
|
| 15 |
KOFUJI Y, ISOBE Y, SHIRAISHI Y, et al. Carbon nitride-aromatic diimide-graphene nanohybrids: metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency[J]. J Am Chem Soc, 2016, 138(31): 10019-10025.
|
| 16 |
WEI Z, LIU M L, ZHANG Z J, et al. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers[J]. Energy Environ Sci, 2018, 11: 2581-2589.
|
| 17 |
YU S, CHENG X, WANG Y S, et al. High activity and selectivity of single palladium atom for oxygen hydrogenation to H₂O₂[J]. Nat Commun, 2022, 13: 4737.
|
| 18 |
GUO Q, ZHOU C Y, MA Z B, et al. Elementary photocatalytic chemistry on TiO2 surfaces[J]. Chem Soc Rev, 2016, 45: 3701-3730.
|
| 19 |
LIM J, KIM H, PARK J, et al. How g-C3N4 works and is different from TiO2 as an environmental photocatalyst: mechanistic view[J]. Environ Sci Technol, 2020, 54: 497-506.
|
| 20 |
TORRES-PINTO A, SAMPAIO M J, SILVA C G, et al. Recent strategies for hydrogen peroxide production by metal-free carbon nitride photocatalysts[J]. Catal, 2019, 9(12): 990.
|
| 21 |
YAN B, CHEN Z, XU Y. Amorphous and crystalline 2D polymeric carbon nitride nanosheets for photocatalytic hydrogen/oxygen evolution and hydrogen peroxide production[J]. Chem-Asian J, 2020, 15(15): 2329-2340.
|
| 22 |
HAIDER Z, CHO H, MOON G, et al. Minireview: selective production of hydrogen peroxide as a clean oxidant over structurally tailored carbon nitride photocatalysts[J]. Catal, 2019, 335(1): 55-64.
|
| 23 |
CAO S, LOW J, YU J, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Adv Mater, 2015, 27: 2150-2176.
|
| 24 |
WU Q, CAO J, WANG X, et al. A metal-free photocatalyst for highly efficient hydrogen peroxide photoproduction in real seawater[J]. Nat Commun, 2021, 12(1): 483.
|
| 25 |
CHEN L, WANG Y, CHENG S, et al. Nitrogen defects/boron dopants engineered tubular carbon nitride for efficient tetracycline hydrochloride photodegradation and hydrogen evolution[J]. Appl Catal B-Environ, 2022, 303: 120932.
|
| 26 |
ISAKA Y, KAWASE Y, KUWAHARA Y, et al. Two-phase system utilizing hydrophobic metal-organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide[J]. Angew Chem Int Ed, 2019, 58(16): 5402-5406.
|
| 27 |
ZHANG H, ZHAO L, GENG F, et al. Carbon dots decorated graphitic carbon nitride as an efficient metal-free photocatalyst for phenol degradation[J]. Appl Catal B-Environ, 2016, 180: 656-662.
|
| 28 |
ZHOU P, MENG X, LI L, et al. Co-doped g-C3N4 isotype heterojunction composites for high-efficiency photocatalytic H2 evolution[J]. J Alloy Compd, 2020, 827: 154259.
|
| 29 |
ZHANG X, MA P J, WANG C, et al. Unraveling the dual defect sites in graphite carbon nitride for ultra-high photocatalytic H2O2 evolution[J]. Energy Environ Sci, 2022, 15: 830.
|
| 30 |
YU H J, SHI R, ZHAO Y X, et al. Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution[J]. Adv Mater, 2017, 29(16): 1605148.
|
| 31 |
WANG Y, DU P P, PAN H Z, et al. Increasing solar absorption of atomically thin 2D carbon nitride sheets for enhanced visible-light photocatalysis[J]. Adv Mater, 2019, 31(40): 1807540.
|
| 32 |
LI R J, BA K K, ZHANG D, et al. Unraveling the synergistic mechanism of boosted photocatalytic H2O2 production over cyano-g-C3N4/In2S3/Ppy heterostructure and enhanced photocatalysis-self-fenton degradation performance[J]. Small, 2024, 20(22): 2308568.
|
| 33 |
ZHAO Y B, ZHANG P, YANG Z C, et al. Mechanistic analysis of multiple processes controlling solar-driven H2O2 synthesis using engineered polymeric carbon nitride[J]. Nat Commun, 2020, 12: 3701.
|
| 34 |
LI R J, ZHENG M, ZHOU X, et al. Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide[J]. Chem Eng J, 2023, 464(15): 142584.
|
| 35 |
CAO S, LI H, TONG T, et al. Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution[J]. Adv Funct Mater, 2018, 28(32): 1802169.
|
| 36 |
LI Y X, WANG S Y, HE Y, et al. Facile top-down strategy for direct metal atomization and coordination achieving a high turnover number in CO2 photoreduction[J]. J Am Chem Soc, 2020, 142(45): 19259-19267.
|
| 37 |
CAO S, LI H, TONG T, et al. Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution[J]. Adv Funct Mater,2018, 28(32): 1802169.
|
| 38 |
WEI Z, LIU M L, ZHANG Z J, et al. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers[J]. Energy Environ Sci, 2018, 11: 2581-2589.
|
| 39 |
KOFUJI Y, ISOBE Y, SHIRAISHI Y, et al. Carbon nitride-aromatic diimide-graphene nanohybrids: metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency[J]. J Am Chem Soc, 2016, 138(31): 10019-10025.
|
| 40 |
SHIRAISHI Y, KANAZAWA S, KOFUJI Y, et al. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts[J]. Angew Chem Int Ed, 2014, 53(49): 13454-13459.
|
| 41 |
BEREZIN M Y, ACHILEFU S. Fluorescence lifetime measurements and biological imaging[J]. Chem Rev, 2010, 110(5): 2641-2684.
|
| 42 |
ZHOU P, CHEN H, CHAO Y, et al. Single-atom Pt-I3 sites on all-inorganic Cs2SnI6 perovskite for efficient photocatalytic hydrogen production[J]. Nat Commun, 2021, 12: 1-8.
|
| 43 |
YU S M, CHENG X, WANG Y S, et al. High activity and selectivity of single palla-dium atom for oxygen hydrogenationto H2O2[J]. Nat Commun, 2022, 13: 4737.
|
| 44 |
LUO Y, ZHANG B P, LIU C C, et al. Sulfone-modified covalent organic frameworks enabling efficient photocatalytic hydrogen peroxide generation via one-step two-electron O2 reduction[J]. Angew Chem Int Ed, 2023, 62(26): e202305355.
|
| 45 |
HOU H, ZENG X, ZHANG X. Production of hydrogen peroxide by photocatalytic processes[J]. Angew Chem Int Ed, 2020, 59(40): 17356-17376.
|
| 46 |
WU G, HU S, HAN Z, et al. The effect of Ni(i)-N active sites on the photocatalytic H2O2 production ability over nickel doped graphitic carbon nitride nanofibers[J]. New J Chem, 2017, 41(24): 15289-15297.
|
| 47 |
WENG Z, LIN Y F, ZHANG X F, et al. Site engineering of covalent organic frameworks for regulating peroxymonosulfate activation to generate singlet oxygen with 100% selectivity[J]. Angew Chem Int Ed, 2023, 62(43): e202310934.
|