| [1] |
YANG G, GONG Z, LUO X, et al. Bonding wood with uncondensed lignins as adhesives[J]. Nature, 2023, 621(7979): 511-515.
|
| [2] |
DENG T, GAO D, SONG X, et al. A natural biological adhesive from snail mucus for wound repair[J]. Nat Commun, 2023, 14(1): 396.
|
| [3] |
NAM S, MOONEY D. Polymeric tissue adhesives[J]. Chem Rev, 2021, 121(18): 11336-11384.
|
| [4] |
XIE X, JIANG Y, YAO X, et al. A solvent-free processed low-temperature tolerant adhesive[J]. Nat Commun, 2024, 15(1): 5017.
|
| [5] |
YAO G, LI F, DONG S. Solvent-free bulk soft material with low-temperature tolerance: transparency, flexibility, stretchability, and adhesion[J]. Chem Eng Sci, 2023, 281(5): 119164.
|
| [6] |
LIU L, WEI M, LI H, et al. Polyvinyl alcohol solvent-free adhesives for biomass bonding via rapid water activation and heat treatment[J]. Green Chem, 2024, 26(24): 11873-11884.
|
| [7] |
YIN L, CHOLEWINSKI A, ZHAO B. Solvent-free urethane-based prepolymer as a versatile underwater adhesive material[J]. Chem Eng J, 2024, 481: 148487.
|
| [8] |
WU S, CAI C, LI F, et al. Deep eutectic supramolecular polymers: bulk supramolecular materials[J]. Angew Chem Int Ed, 2020, 59(29): 11871-11875.
|
| [9] |
LI W, BOUZIDI L, NARINE S. Current research and development status and prospect of hot-melt adhesives: a review[J]. Ind Eng Chem Res, 2008, 47(20): 7524-7532.
|
| [10] |
MARQUE E A S, DA SLIVA L F M, BANEA M D, et al. Adhesive joints for low- and high-temperature use: an overview[J]. The J Adhesion, 2015, 91(7): 556-585.
|
| [11] |
BEHNOOD A, MODIRI G. Morphology, rheology, and physical properties of polymer-modified asphalt binders[J]. Eur Polym J, 2019, 112: 766-791.
|
| [12] |
PARK S, JU H, PARK S, et al. New possibilities in polymer binder jetting additive manufacturing via infiltration and warm isostatic pressing[J]. Mater Des, 2023, 231: 112045.
|
| [13] |
ZHANG J, WANG W, ZHANG Y, et al. Small-molecule ionic liquid-based adhesive with strong room-temperature adhesion promoted by electrostatic interaction[J]. Nat Commun, 2022, 13(1): 5214.
|
| [14] |
LIANG Y, WANG K, LI J, et al. Low-molecular-weight supramolecular adhesives based on non-covalent self-assembly of a small molecular gelator[J]. Mater Horiz, 2022, 9(6): 1700.
|
| [15] |
WANG Y, LIU G, ZHAO J, et al. Mechanically interlocked [an] daisy chain adhesives with simultaneously enhanced interfacial adhesion and cohesion[J]. Angew Chem Int Ed, 2024, 63(42): e202409705.
|
| [16] |
SUN P, LI Y, QIN B, et al. Super strong and multi-reusable supramolecular epoxy hot melt adhesives[J]. ACS Mater Lett, 2021, 3(7): 1003-1009.
|
| [17] |
BEDNARCZYK P, MOZELEWSKA K, CZECH Z. Influence of the UV crosslinking method on the properties of acrylic adhesive[J]. Int J Adhes, 2020, 102: 102652.
|
| [18] |
ZHANG Q, DENG Y, SHI C, et al. Dual closed-loop chemical recycling of synthetic polymers by intrinsically reconfigurable poly(disulfides)[J]. Matter, 2021, 4(4): 1352-1364.
|
| [19] |
MU C, DU Z, LI W. Taming of heteropoly acids into adhesive electrodes using amino acids for the development of flexible two-dimensional supercapacitors[J]. Polyoxometalates, 2024, 3(3): 9140062.
|
| [20] |
XU J, LI X, LI J, et al. Wet and functional adhesives from one-step aqueous self-assembly of natural amino acids and polyoxometalates[J]. Angew Chem Int Ed, 2017, 56(30): 8731 -8735.
|
| [21] |
LI X, DU Z, SONG Z, et al. Bringing heteropolyacid based underwater adhesive as printable cathode coating for self-powered electrochromic aqueous batteries[J]. Adv Funct Mater, 2018, 28(23): 1800599.
|
| [22] |
HU Y, LIANG P, WANG Z, et al. Developing amino acid-citric acid-based deep eutectic solvent for food applications: preparation, characterization, antibacterial activity, biosafety, and formation mechanism exploration[J]. Sustainable Chem Pharm, 2023, 36: 101317.
|
| [23] |
XIE X, MENG F, ZHANG Z, et al. Self-assembled peptide-based nanoblocks for drug delivery[J]. New J Chem, 2023, 47(40): 18721-18728.
|
| [24] |
CHEN C, YANG X, LI S, et al. Tannic acid-thioctic acid hydrogel: a novel injectable supramolecular adhesive gel for wound healing[J]. Green Chem, 2021, 23(4): 1794-1804.
|
| [25] |
XIE X, XU X, JIANG Y. Hydrogen-bonding interaction-driven catechin assembly into solvent-free supramolecular adhesive with antidrying and antifreezing properties[J]. ACS Appl Polym Mater, 2022, 4(6): 4319-4328.
|
| [26] |
解晓明, 张嘉琦. 氢键作用驱动原花青素构筑水基抗菌黏合剂[J]. 应用化学, 2022, 39(10): 1533-1542
|
|
XIE X M, ZHANG J Q. Hydrogen bond interaction driven procyanidine assembly into underwater adhesive with antibacterial activity[J]. Chin J Appl Chem, 2022, 39(10): 1533-1542.
|
| [27] |
LAI J, HUANG S, WU S, et al. Adhesion behaviour of bulk supramolecular polymers via pillar[5]arene-based molecular recognition[J]. Chem Commun, 2021, 57(98): 13317-13320.
|
| [28] |
MA C, SUN J, LI B, et al. Ultra-strong bio-glue from genetically engineered polypeptides[J]. Nat Commun, 2021, 12(1): 3613.
|
| [29] |
WANG Z, GU X, LI B, et al. Molecularly engineered protein glues with superior adhesion performance[J]. Adv Mater, 2022, 34(41): 2204590.
|
| [30] |
CHEN S, SHEN B, ZHANG F, et al. Mussel-inspired graphene film with enhanced durability as a macroscale solid lubricant[J]. ACS Appl Mater Interfaces, 2019, 11(34): 31386-31392.
|
| [31] |
LI J, EJIMA H, YOSHIE N. Seawater-assisted self-healing of catechol polymers via hydrogen bonding and coordination interactions[J]. ACS Appl Mater Interfaces, 2016, 8(29): 19047-19053.
|
| [32] |
DENG X, TANG J, GUAN W, et al. Strong dynamic interfacial adhesion by polymeric ionic liquids under extreme conditions[J]. ACS Nano, 2022, 16(4): 5303-5315.
|
| [33] |
LIU X, MA Z, NIE J, et al. Exploiting redox-complementary peptide/polyoxometalate coacervates for spontaneously curing into antimicrobial adhesives[J]. Biomacromolecules, 2022, 23(3): 1009-1019.
|
| [34] |
WAMG X, LIU X, MA Z, et al. Photochromic and photothermal hydrogels derived from natural amino acids and heteropoly acids[J]. Soft Matter, 2021, 17(44): 10140-10148.
|
| [35] |
CHEM J, DONG Z, LI M, et al. Ultra-strong and proton conductive aqua-based adhesives from facile blending of polyvinyl alcohol and tungsten oxide clusters[J]. Adv Funct Mater, 2022, 32(33): 2111892.
|
| [36] |
GUO H, ZENG M, LI X, et al. Multifunctional enhancement of proton-conductive, stretchable, and adhesive performance in hybrid polymer electrolytes by polyoxometalate nanoclusters[J]. ACS Appl Mater Interfaces, 2021, 13(25): 30039-30050.
|
| [37] |
SALIHU R, ABD RAZAK S I, AHMAD N, et al. Citric acid: a green cross-linker of biomaterials for biomedical applications[J]. Eur Polym J, 2021, 146, 110271.
|
| [38] |
PRESTI M, RIZZO G, FARINOLA G, et al. Bioinspired biomaterial composite for all-water-based high-performance adhesives[J]. Adv Sci, 2021, 8(16): 2004786.
|
| [39] |
LIU X, JIANG Q, YIN Y, et al. Phe-phe-based macroscopic supramolecular hydrogel construction strategies and biomedical applications[J]. Chem Bio Eng, 2024, 1(8): 664-677.
|
| [40] |
KE X, TANG S, DONG Z, et al. An instant, repeatable and universal supramolecular adhesive based on natural small molecules for dry/wet environments[J]. Chem Eng J, 2022, 442(15): 136206.
|
| [41] |
MA Z, LIU X, NIE J, et al. Nano-antimicrobial peptides based on constitutional isomerism-dictated self-assembly[J]. Biomacromolecules, 2022, 23(3): 1302-1313.
|