应用化学 ›› 2024, Vol. 41 ›› Issue (4): 484-495.DOI: 10.19894/j.issn.1000-0518.230373

• 综合评述 • 上一篇    

石榴石Li7La3Zr2O12固态电解质电导率优化策略研究进展

张轶, 陈宇童, 师靖宇, 黄科科()   

  1. 吉林大学化学学院,无机合成与制备化学国家重点实验室,长春 130012
  • 收稿日期:2023-11-28 接受日期:2024-02-11 出版日期:2024-04-01 发布日期:2024-04-28
  • 通讯作者: 黄科科
  • 基金资助:
    吉林大学研究生教育教学改革研究项目(2021JGZ08)

Research Progress of Optimizing Conductivity of Garnet-Type Solid Electrolyte Li7La3Zr2O12

Yi ZHANG, Yu-Tong CHEN, Jing-Yu SHI, Ke-Ke HUANG()   

  1. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry,College of Chemistry,Jilin University,Changchun 130012,China
  • Received:2023-11-28 Accepted:2024-02-11 Published:2024-04-01 Online:2024-04-28
  • Contact: Ke-Ke HUANG
  • About author:kkhuang@jlu.edu.cn
  • Supported by:
    the Research Project on Postgraduate Education and Teaching Reform of Jilin University(2021JGZ08)

摘要:

近几年,应用碳材料负极和有机电解液的液态锂离子电池(LIBs)的弊端日益凸显,电解液泄漏和过热燃烧等安全事故频发。 另外,传统的LIBs也无法满足当今社会对高能量密度电池的需求。 由于上述LIBs存在的诸多缺点,市场急需开发兼顾高能量密度与高安全性能的新型电池,现已发现可通过引入固态电解质的途径来实现。 固态锂电池(SSLBs)相较于传统的LIBs,具有较高的能量密度、较宽的工作温度范围和更高的安全性。 其中,固态电解质作为固态电池的重要元件之一,对电池性能的影响至关重要。 石榴石Li7La3Zr2O12凭借其高锂离子电导率(1×10-4~1×10-3 S/cm)、宽电化学窗口(9 V)以及对锂负极的高稳定性等优点,在众多固态电解质中脱颖而出。 本综述就提高石榴石基电解质锂离子电导率的研究予以总结: 首先,介绍了Li7La3Zr2O12晶体结构并分析了结构与电导率之间的关系; 然后,综述了几种提高电导率的方法,包括引入掺杂离子、改进烧结技术和添加烧结助剂等; 最后,提出了石榴石基固态电池的未来发展的挑战,为固态电解质相关研究提供参考。

关键词: 锂离子电池, 固态电解质, 石榴石, 离子电导率, 优化策略

Abstract:

In recent years, the drawbacks of liquid lithium-ion batteries (LIBs) with carbon anodes and organic electrolytes have become more and more obvious. Safety accidents such as electrolyte leakage and overheating combustion occur frequently. In addition, traditional LIBs are unable to meet the demand for high energy density batteries as modern society develops. Due to many disadvantages mentioned above, there is an urgent need to develop a new type of battery that combines high energy density with high safety performance. Introducing a solid electrolyte was found to achieve this. Solid lithium-ion batteries (SSLBs) have higher energy density, wider operating temperature range, and higher safety level than traditional liquid ones. As one of the core materials of solid-state batteries, solid electrolyte is critical to battery performance. Garnet Li7La3Zr2O12 has high Li+ conductivity (1×10-4~1×10-3 S/cm), wide electrochemical window (9 V), and good stability with lithium anodes. Based on these advantages, LLZO stands out among many types of solid-state electrolytes. In this article, the improvements of ionic conductivity in garnet-type solid electrolyte are summarized. Firstly, the crystal structure of LLZO as well as the relationship between structure and conductivity is discussed. Then, three methods for improving lithium ions conductivity are reviewed, including doping element, improving sintering techniques, and adding additives. Finally, several remaining challenges for the future development of garnet-based solid state batteries are presented, which can be used as a reference for related research.

Key words: Lithium-ion battery, Solid electrolyte, Garnet, Lithium-ion conductivity, Optimizing methods

中图分类号: