
应用化学 ›› 2023, Vol. 40 ›› Issue (8): 1158-1174.DOI: 10.19894/j.issn.1000-0518.230131
收稿日期:
2023-05-04
接受日期:
2023-07-06
出版日期:
2023-08-01
发布日期:
2023-08-24
通讯作者:
冯立纲
基金资助:
Chun YIN, Jia-Xin LI, Li-Gang FENG()
Received:
2023-05-04
Accepted:
2023-07-06
Published:
2023-08-01
Online:
2023-08-24
Contact:
Li-Gang FENG
About author:
ligang.feng@yzu.edu.cnSupported by:
摘要:
尿素作为有效的氢载体,可应用于尿素电解(UE)制氢和直接尿素燃料电池(DUFC)。在尿素电解制氢中,阳极的尿素氧化反应(UOR)与阴极的析氢反应(HER)耦合生产氢气,与水电解制氢相比更具成本效益,能耗约降低30%,经济成本约降低36%。在直接尿素燃料电池中,尿素作为燃料在阳极进行氧化,与阴极的氧还原耦合将化学能转化为电能。UOR作为这2种能量转换技术的基础半反应,受到越来越多的关注。本文讨论了UOR在碱性电解质中的反应原理和性能描述参数,分别介绍了UOR在UE和DUFC中的应用,主要对UE和DUFC的作用原理和一些催化剂的发展现状进行了分析,最后探讨了UE和DUFC发展面临的挑战,希望本篇综述能对UE和DUFC的理解提供参考。
中图分类号:
尹春, 李家欣, 冯立纲. 浅析尿素电解制氢及尿素燃料电池研究进展[J]. 应用化学, 2023, 40(8): 1158-1174.
Chun YIN, Jia-Xin LI, Li-Gang FENG. Basics of Research Progress for Urea Electrolysis for Hydrogen Generation and Urea Fuel Cells[J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1158-1174.
图2 (a) EC机制示意图[26]; (b) Ni(OH)2电极在5 mol/L KOH中NiOOH的XRD衍射图像[27]; (c) Ni(OH)2催化剂在1 mol/L尿素和5 mol/L KOH中的原位SERS光谱[28]
Fig. 2 (a) Schematic illustration of the EC mechanism[26]; (b) XRD reflections of NiOOH for Ni(OH)2 electrode in 5 mol/L KOH[27]; (c) In situ SERS spectra of Ni(OH)2 catalyst in 1 mol/L urea+5 mol/L KOH[28]
图3 (a) Ni2Fe(CN)6的LSV曲线[30]; (b)UOR过程中N2、N2O、NO2-和NO3-产物之间的相关性示意图[31];(c) β-Ni(OH)2电极上的UOR机理[32]
Fig.3 (a) LSV curves of the Ni2Fe(CN)6[30]; (b) Schematic illustration of the correlation among N2, N2O, NO2- and NO3- products during UOR[31]; (c) The UOR mechanism on the β-Ni(OH)2 electrode[32]
图4 (a)催化剂的CV曲线, (b)催化剂的塔菲尔斜率, (c)EIS能奎斯特图和等效电路[33],(d)NiF3/Ni2P@CC-2在5000圈扫描前后的CV曲线(插图: 10 h的计时电流计曲线)[37],(e)不同扫描速率下Ni-Fe LDH/EG的CV曲线[41],(f)Ni-S-Se/NF||Ni-S-Se/NF电解槽的极化曲线[42]
Fig.4 (a) CV curves of the catalysts, (b) Tafel slopes of the catalysts and (c) Nyquist plots with a fitting equivalent circuit[33]. (d) The polarization curves of NiF3/Ni2P@CC-2 before and after 5000 CV cycles (insert: the chronoamperometric for 10 h)[37]. (e) CV curves at different scan rates for Ni-Fe LDH/EG[41]. (f) Polarization curves of Ni-S-Se/NF||Ni-S-Se/NF electrolyzer[42]
Hydrogen carrier | w(H element)/% | Melting point/℃, boiling point/℃ | Lower/upper explosive limit | Toxicity threshold limit value/(mg·L-1) | Energy density/(MJ·kg-1) | Cost/($·kg-1) |
---|---|---|---|---|---|---|
Hydrogen | 100 | -259, -253 | 4%/75% | Nontoxic | 142.0 | 0.79 |
Ammonia | 17.6 | -78, -33 | 15%/28% | 25/35 | 22.5 | 0.39 |
Ethanol | 13.1 | -117, 79 | 3.3%/19% | 1 000 | 26.8 | 0.64 |
Methanol | 12.6 | -98, 65 | 6.7%/36% | 200/250 | 15.2 | 0.49 |
Urea | 6.7 | 132.7, 196.6 | Low-vapor-pressure solid | Nontoxic | 15.66 | 0.24 |
表1 各种氢载体的物理化学和毒理学特性[1]
Table 1 Physicochemical and toxicological characteristics of various hydrogen carriers[1]
Hydrogen carrier | w(H element)/% | Melting point/℃, boiling point/℃ | Lower/upper explosive limit | Toxicity threshold limit value/(mg·L-1) | Energy density/(MJ·kg-1) | Cost/($·kg-1) |
---|---|---|---|---|---|---|
Hydrogen | 100 | -259, -253 | 4%/75% | Nontoxic | 142.0 | 0.79 |
Ammonia | 17.6 | -78, -33 | 15%/28% | 25/35 | 22.5 | 0.39 |
Ethanol | 13.1 | -117, 79 | 3.3%/19% | 1 000 | 26.8 | 0.64 |
Methanol | 12.6 | -98, 65 | 6.7%/36% | 200/250 | 15.2 | 0.49 |
Urea | 6.7 | 132.7, 196.6 | Low-vapor-pressure solid | Nontoxic | 15.66 | 0.24 |
Catalyst | Electrolyte | Scan rate/(mV·s-1) | Peak current density (mA·cm-2) at (@) specific potential | Potential/V (i=10 mA/cm2) | Ref. |
---|---|---|---|---|---|
Ni-MOF-0.5 | 1 mol/L KOH+0.5 mol/L urea | 5 | — | 1.38 V(vs.RHE) | [ |
C@NiO | 1 mol/L KOH+0.33 mol/L urea | 10 | 25@1.46 V(vs.RHE) | 1.36 V(vs.RHE) | [ |
Ni(OH)2@NF | 1 mol/L KOH+0.33 mol/L urea | 5 | — | 1.35 V(vs.RHE) | [ |
V-Ni3N/NF | 1 mol/L KOH+0.5 mol/L urea | 2 | — | 1.361 V(vs.RHE) | [ |
Ni@NCNT-3 | 1 mol/L KOH+0.5 mol/L urea | 10 | 45.8@1.5 V(vs.RHE) | 1.38 V(vs.RHE) | [ |
Ni/SiO x /N-C | 1 mol/L KOH+0.33 mol/L urea | 5 | — | 1.384 V(vs.RHE) | [ |
NiFe/N-C | 1 mol/L KOH+1 mol/L urea | 5 | 100@1.37 V(vs.RHE) | 1.37 V(vs.RHE) (at 100 mA/cm2) | [ |
NP-Ni0.7Fe0.3 NF | 1 mol/L KOH+0.33 mol/L urea | 5 | — | 1.33 V(vs.RHE) | [ |
NiFeMo | 1 mol/L KOH+0.33 mol/L urea | 5 | 152@1.5 V(vs.RHE) | 1.38 V(vs.RHE) | [ |
Ni3N-350/NF | 1 mol/L KOH+0.5 mol/L urea | 5 | — | 1.34 V(vs.RHE) | [ |
a-Ni2P/G | 1 mol/L KOH+0.5 mol/L urea | 5 | 209.1@1.7 V(vs.RHE) | 1.28 V(vs.RHE) | [ |
Ni3S2/MWCNTs/NF | 1 mol/L KOH+0.5 mol/L urea | 5 | — | 1.338 V(vs.RHE) | [ |
β-NiS | 1 mol/L KOH+0.33 mol/L urea | 5 | — | 1.4 V(vs.RHE) | [ |
Ni0.85Se/rGO | 1 mol/L KOH+0.5 mol/L urea | 5 | — | 1.36 V(vs.RHE) | [ |
Ni/NiO@NC | 1 mol/L KOH+0.33 mol/L urea | 5 | — | 1.35 V(vs.RHE) | [ |
Ni@C-V2O3/NF | 1 mol/L KOH+0.5 mol/L urea | 5 | — | 1.32 V(vs.RHE) | [ |
NiSe2-NiO 350 | 1 mol/L KOH+0.33 mol/L urea | 10 | 1.33 V(vs.RHE) | [ | |
NiF3/Ni2P@CC-2 | 1 mol/L KOH+0.33 mol/L urea | 10 | 122@1.6 V(vs.RHE) | 1.36 V(vs.RHE) | [ |
MNPBA-P | 1 mol/L KOH+0.5 mol/L urea | 20 | — | 1.344 V(vs.RHE) | [ |
Rh-Ni | 1 mol/L KOH+0.33 mol/L urea | 10 | 82@0.7 V(vs.Hg/HgO) | 1.4 V(vs.RHE) (at 50 mA/cm2) | [ |
Ni/Rh | 5 mol/L KOH+0.33 mol/L urea | 5 | 45@0.65 V(vs. Ag/AgCl) | — | [ |
PtIr | 5 mol/L KOH+0.33 mol/L urea | 10 | 125@0.8 V(vs.Hg/HgO) | — | [ |
Rh-NCs/NiO-NSs | 1 mol/L KOH+0.33 mol/L urea | 50 | 616@1.55V(vs.RHE) | — | [ |
表2 2009-2022年文献报道中的尿素氧化性能
Table 2 The UOR performance reported in the years of 2009-2022
Catalyst | Electrolyte | Scan rate/(mV·s-1) | Peak current density (mA·cm-2) at (@) specific potential | Potential/V (i=10 mA/cm2) | Ref. |
---|---|---|---|---|---|
Ni-MOF-0.5 | 1 mol/L KOH+0.5 mol/L urea | 5 | — | 1.38 V(vs.RHE) | [ |
C@NiO | 1 mol/L KOH+0.33 mol/L urea | 10 | 25@1.46 V(vs.RHE) | 1.36 V(vs.RHE) | [ |
Ni(OH)2@NF | 1 mol/L KOH+0.33 mol/L urea | 5 | — | 1.35 V(vs.RHE) | [ |
V-Ni3N/NF | 1 mol/L KOH+0.5 mol/L urea | 2 | — | 1.361 V(vs.RHE) | [ |
Ni@NCNT-3 | 1 mol/L KOH+0.5 mol/L urea | 10 | 45.8@1.5 V(vs.RHE) | 1.38 V(vs.RHE) | [ |
Ni/SiO x /N-C | 1 mol/L KOH+0.33 mol/L urea | 5 | — | 1.384 V(vs.RHE) | [ |
NiFe/N-C | 1 mol/L KOH+1 mol/L urea | 5 | 100@1.37 V(vs.RHE) | 1.37 V(vs.RHE) (at 100 mA/cm2) | [ |
NP-Ni0.7Fe0.3 NF | 1 mol/L KOH+0.33 mol/L urea | 5 | — | 1.33 V(vs.RHE) | [ |
NiFeMo | 1 mol/L KOH+0.33 mol/L urea | 5 | 152@1.5 V(vs.RHE) | 1.38 V(vs.RHE) | [ |
Ni3N-350/NF | 1 mol/L KOH+0.5 mol/L urea | 5 | — | 1.34 V(vs.RHE) | [ |
a-Ni2P/G | 1 mol/L KOH+0.5 mol/L urea | 5 | 209.1@1.7 V(vs.RHE) | 1.28 V(vs.RHE) | [ |
Ni3S2/MWCNTs/NF | 1 mol/L KOH+0.5 mol/L urea | 5 | — | 1.338 V(vs.RHE) | [ |
β-NiS | 1 mol/L KOH+0.33 mol/L urea | 5 | — | 1.4 V(vs.RHE) | [ |
Ni0.85Se/rGO | 1 mol/L KOH+0.5 mol/L urea | 5 | — | 1.36 V(vs.RHE) | [ |
Ni/NiO@NC | 1 mol/L KOH+0.33 mol/L urea | 5 | — | 1.35 V(vs.RHE) | [ |
Ni@C-V2O3/NF | 1 mol/L KOH+0.5 mol/L urea | 5 | — | 1.32 V(vs.RHE) | [ |
NiSe2-NiO 350 | 1 mol/L KOH+0.33 mol/L urea | 10 | 1.33 V(vs.RHE) | [ | |
NiF3/Ni2P@CC-2 | 1 mol/L KOH+0.33 mol/L urea | 10 | 122@1.6 V(vs.RHE) | 1.36 V(vs.RHE) | [ |
MNPBA-P | 1 mol/L KOH+0.5 mol/L urea | 20 | — | 1.344 V(vs.RHE) | [ |
Rh-Ni | 1 mol/L KOH+0.33 mol/L urea | 10 | 82@0.7 V(vs.Hg/HgO) | 1.4 V(vs.RHE) (at 50 mA/cm2) | [ |
Ni/Rh | 5 mol/L KOH+0.33 mol/L urea | 5 | 45@0.65 V(vs. Ag/AgCl) | — | [ |
PtIr | 5 mol/L KOH+0.33 mol/L urea | 10 | 125@0.8 V(vs.Hg/HgO) | — | [ |
Rh-NCs/NiO-NSs | 1 mol/L KOH+0.33 mol/L urea | 50 | 616@1.55V(vs.RHE) | — | [ |
Anode catalyst | Cathode catalyst | Electrolyte | Cell voltage (V) at (@)specific current density (mA/cm2) for UE | Cell voltage (V) at (@) specific current density (mA/cm2) for WS/V | Ref. |
---|---|---|---|---|---|
P-CoNi2S4 | P-CoNi2S4 | 1 mol/L KOH+0.33 mol/L urea | 1.402@10 | 1.544@10 | [ |
NiFeRh-LDH | NiFeRh-LDH | 1 mol/L KOH+0.33 mol/L urea | 1.346@10 | 1.455@10 | [ |
Ni-S-Se/NF | Ni-S-Se/NF | 1 mol/L KOH+0.5 mol/L urea | 1.47@10 | 1.57@10 | [ |
Ni-NiO-Mo0.84Ni0.16/NF | Ni-NiO-Mo0.84Ni0.16/NF | 1 mol/L KOH+0.5 mol/L urea | 1.37@10 | 1.52@10 | [ |
MoP@NiCo-LDH/NF-20 | MoP@NiCo-LDH/NF-20 | 1 mol/L KOH+0.5 mol/L urea | 1.405@100 | 1.697@100 | [ |
Fe2P@Ni x P/NF | Fe2P@Ni x P/NF | 1 mol/L KOH+0.5 mol/L urea | 1.538@100 | 1.705@100 | [ |
Ni3N/Ni0.2Mo0.8N/NF | Ni3N/Ni0.2Mo0.8N/NF | 1 mol/L KOH+0.5 mol/L urea | 1.348@10 | 1.487@10 | [ |
NiFeMo | NiFeMo | 1 mol/L KOH+0.33 mol/L urea | 1.46@10 | 1.60@10 | [ |
NiCoFe-LTH | NiCoFe-LTH | 1 mol/L KOH+0.33 mol/L urea | 1.49@10 | 1.65@10 | [ |
NC-FNCP | NC-FNCP | 1 mol/L KOH+0.5 mol/L urea | 1.52@10 | 1.63@10 | [ |
Ni-CoP/HPFs | Ni-CoP/HPFs | 1 mol/L KOH+0.5 mol/L urea | 1.43@10 | 1.68@10 | [ |
Ni-Mo | Ni-Mo | 1 mol/L KOH+0.1 mol/L urea | 1.43@10 | 1.59@10 | [ |
Co-Z/Se-2 | Co-Z/Se-2 | 1 mol/L KOH+0.5 mol/L urea | 1.49@10 | 1.678@10 | [ |
NF/CoMoS/NiFeOOH | NF/CoMoS/NiFeOOH | 1 mol/L KOH+0.5 mol/L urea | 1.66@100 | 1.732@100 | [ |
V-FeNi3N/Ni3N | V-FeNi3N/Ni3N | 1 mol/L KOH+0.33 mol/L urea | 1.46@10 | 1.54@10 | [ |
Ru-NiFe-③/NF | Ru-NiFe-③/NF | 1 mol/L KOH+0.33 mol/L urea | 1.47@100 | 1.63@100 | [ |
Co(OH)F/NF | Co–P/NF | 1 mol/L KOH+0.7 mol/L urea | 1.42@10 | 1.65@10 | [ |
NiO-NiPi | NiP/NiO-NiPi | 1 mol/L KOH+0.5 mol/L urea | 1.585@100 | 1.876@100 | [ |
Ni/Ni2P/CNF | Pt/C | 1 mol/L KOH+0.33 mol/L urea | 1.40@10 | 1.58@10 | [ |
表3 2019-2022年文献报道中的尿素电解性能
Table 3 The UE performance reported in the years of 2019-2022
Anode catalyst | Cathode catalyst | Electrolyte | Cell voltage (V) at (@)specific current density (mA/cm2) for UE | Cell voltage (V) at (@) specific current density (mA/cm2) for WS/V | Ref. |
---|---|---|---|---|---|
P-CoNi2S4 | P-CoNi2S4 | 1 mol/L KOH+0.33 mol/L urea | 1.402@10 | 1.544@10 | [ |
NiFeRh-LDH | NiFeRh-LDH | 1 mol/L KOH+0.33 mol/L urea | 1.346@10 | 1.455@10 | [ |
Ni-S-Se/NF | Ni-S-Se/NF | 1 mol/L KOH+0.5 mol/L urea | 1.47@10 | 1.57@10 | [ |
Ni-NiO-Mo0.84Ni0.16/NF | Ni-NiO-Mo0.84Ni0.16/NF | 1 mol/L KOH+0.5 mol/L urea | 1.37@10 | 1.52@10 | [ |
MoP@NiCo-LDH/NF-20 | MoP@NiCo-LDH/NF-20 | 1 mol/L KOH+0.5 mol/L urea | 1.405@100 | 1.697@100 | [ |
Fe2P@Ni x P/NF | Fe2P@Ni x P/NF | 1 mol/L KOH+0.5 mol/L urea | 1.538@100 | 1.705@100 | [ |
Ni3N/Ni0.2Mo0.8N/NF | Ni3N/Ni0.2Mo0.8N/NF | 1 mol/L KOH+0.5 mol/L urea | 1.348@10 | 1.487@10 | [ |
NiFeMo | NiFeMo | 1 mol/L KOH+0.33 mol/L urea | 1.46@10 | 1.60@10 | [ |
NiCoFe-LTH | NiCoFe-LTH | 1 mol/L KOH+0.33 mol/L urea | 1.49@10 | 1.65@10 | [ |
NC-FNCP | NC-FNCP | 1 mol/L KOH+0.5 mol/L urea | 1.52@10 | 1.63@10 | [ |
Ni-CoP/HPFs | Ni-CoP/HPFs | 1 mol/L KOH+0.5 mol/L urea | 1.43@10 | 1.68@10 | [ |
Ni-Mo | Ni-Mo | 1 mol/L KOH+0.1 mol/L urea | 1.43@10 | 1.59@10 | [ |
Co-Z/Se-2 | Co-Z/Se-2 | 1 mol/L KOH+0.5 mol/L urea | 1.49@10 | 1.678@10 | [ |
NF/CoMoS/NiFeOOH | NF/CoMoS/NiFeOOH | 1 mol/L KOH+0.5 mol/L urea | 1.66@100 | 1.732@100 | [ |
V-FeNi3N/Ni3N | V-FeNi3N/Ni3N | 1 mol/L KOH+0.33 mol/L urea | 1.46@10 | 1.54@10 | [ |
Ru-NiFe-③/NF | Ru-NiFe-③/NF | 1 mol/L KOH+0.33 mol/L urea | 1.47@100 | 1.63@100 | [ |
Co(OH)F/NF | Co–P/NF | 1 mol/L KOH+0.7 mol/L urea | 1.42@10 | 1.65@10 | [ |
NiO-NiPi | NiP/NiO-NiPi | 1 mol/L KOH+0.5 mol/L urea | 1.585@100 | 1.876@100 | [ |
Ni/Ni2P/CNF | Pt/C | 1 mol/L KOH+0.33 mol/L urea | 1.40@10 | 1.58@10 | [ |
Anode | Cathode | Anolyte | Oxidant | Peak power density/ (mW·cm-2) | Temperature/℃ | Ref. |
---|---|---|---|---|---|---|
Pt/C | Pt/C | 1 mol/L urea | Air | 0.55 | Room temperature | [ |
Ni/C | Ag/C | 1 mol/L urea | Air | 0.14 | Room temperature | |
Ni/C | MnO2/C | 1 mol/L urea | Air | 1.7 | 50 | |
Ni@C | Pt/C | 1 mol/L KOH+0.33 mol/L urea | Air | 13.8 | 50 | [ |
Ni-Cu/ZnO@MWCNT | Pt/C | 3 mol/L KOH+0.7 mol/L urea | Air | 44.36 | 50 | [ |
h-NiWO4NPs/rGO | Pt/C | 1 mol/L KOH+0.33 mol/L urea | Air | 5 | Room temperature | [ |
NiCo2O4/CC-12 | Pt/C | 1 mol/L KOH+0.05 mol/L urea | Air | 38 | 80 | [ |
Co3O4/NiO | Co3O4@MnO2 | 0.1 mol/L KOH+0.05 mol/L urea | Air | 33.8 | 60 | [ |
Ni-Co/MWCNT | Pt/C | 3 mol/L KOH+1 mol/L urea | O2 | 17.5 | 60 | [ |
Ni/rGO-300 | Graphite/Filter paper | 6 mol/L KOH+0.33 mol/L urea | 30% H2O2 | 0.18 | 19 | [ |
CoNi/rGO@NF | Pd/CFC | 5 mol/L KOH+0.33 mol/L urea | 0.9 mol/L H2O2+2 mol/L H2SO4 | 12.58 | 60 | [ |
NiCo2S4@CS | Pd/Ti | 5 mol/L KOH+0.2 mol/L urea | 1 mol/L H2O2+2 mol/L H2SO4 | 10.36 | 60 | [ |
Ni(OH)2/NF | Pd/C@TiC | 5 mol/L KOH+0.6 mol/L urea | 2 mol/L H2O2+2 mol/L H2SO4 | 19.7 | 20 | [ |
NiCo/NF | Pd/CFC | 7 mol/L KOH+0.5 mol/L urea | 2 mol/L H2O2+2 mol/L H2SO4 | 17.4 | 20 | [ |
Ni-Se/NF | Prussian blue | 1 mol/L KOH+0.5 mol/L urea | 2 mol/L H2O2+2 mol/L H2SO4 | 33 | 20 | [ |
Ni-120/VC | Pt/C | 7 mol/L KOH+0.33 mol/L urea | 2 mol/L H2O2+2 mol/L H2SO4 | 36.4 | 70 | [ |
Ni0.8Co0.2(OH)2 | Pt/C | 5 mol/L KOH+0.5 mol/L urea | 2 mol/L H2O2+2 mol/L H2SO4 | 11.2 | 20 | [ |
Ni6Cr4-CNT@C | Pt/C | 5 mol/L KOH+1 mol/L urea | 2 mol/L H2O2+2 mol/L H2SO4 | 48.1 | 80 | [ |
Pt | Graphite | 1 mol/L KOH+0.3 mol/L urea | 0.65 mol/L AgNO3 | 0.91 | Room temperature | [ |
Ni/CC | CC | Fresh urine | 50 mg/L Cr(Ⅵ)+0.25 mol/L H2SO4 | 0.34 | 20 | [ |
Pd-Ni/C | Pd/C | 1 mol/L KOH+0.33 mol/L urea | O2 | 1.12 | Room temperature | [ |
Ni/CNT@sponge | Pt/C | 3 mol/L KOH+3 mol/L urea | 1.5 mol/L H2SO4 | 6.6 | 45 | [ |
Ni nanorods/NF | Prussian blue | 1 mol/L NaOH+0.33 mol/L urea | 2 mol/L H2O2+2 mol/L KCl+ 2 mol/L H2SO4 | 10.6 | 20 | [ |
Ni-Co NWAs | Pd/CFC | 5 mol/L KOH+0.33 mol/L urea | 2 mol/L H2O2+2 mol/L H2SO4 | 5.03 | 25 | [ |
Ni-P HPNG-40 | Pt net | 9 mol/L KOH+0.5 mol/L urea | 2 mol/L H2O2+2 mol/L H2SO4 | 38.15 | 60 | [ |
表4 2010-2023年文献报道中的DUFC性能
Table 4 The DUFC performance reported in the years of 2010-2023
Anode | Cathode | Anolyte | Oxidant | Peak power density/ (mW·cm-2) | Temperature/℃ | Ref. |
---|---|---|---|---|---|---|
Pt/C | Pt/C | 1 mol/L urea | Air | 0.55 | Room temperature | [ |
Ni/C | Ag/C | 1 mol/L urea | Air | 0.14 | Room temperature | |
Ni/C | MnO2/C | 1 mol/L urea | Air | 1.7 | 50 | |
Ni@C | Pt/C | 1 mol/L KOH+0.33 mol/L urea | Air | 13.8 | 50 | [ |
Ni-Cu/ZnO@MWCNT | Pt/C | 3 mol/L KOH+0.7 mol/L urea | Air | 44.36 | 50 | [ |
h-NiWO4NPs/rGO | Pt/C | 1 mol/L KOH+0.33 mol/L urea | Air | 5 | Room temperature | [ |
NiCo2O4/CC-12 | Pt/C | 1 mol/L KOH+0.05 mol/L urea | Air | 38 | 80 | [ |
Co3O4/NiO | Co3O4@MnO2 | 0.1 mol/L KOH+0.05 mol/L urea | Air | 33.8 | 60 | [ |
Ni-Co/MWCNT | Pt/C | 3 mol/L KOH+1 mol/L urea | O2 | 17.5 | 60 | [ |
Ni/rGO-300 | Graphite/Filter paper | 6 mol/L KOH+0.33 mol/L urea | 30% H2O2 | 0.18 | 19 | [ |
CoNi/rGO@NF | Pd/CFC | 5 mol/L KOH+0.33 mol/L urea | 0.9 mol/L H2O2+2 mol/L H2SO4 | 12.58 | 60 | [ |
NiCo2S4@CS | Pd/Ti | 5 mol/L KOH+0.2 mol/L urea | 1 mol/L H2O2+2 mol/L H2SO4 | 10.36 | 60 | [ |
Ni(OH)2/NF | Pd/C@TiC | 5 mol/L KOH+0.6 mol/L urea | 2 mol/L H2O2+2 mol/L H2SO4 | 19.7 | 20 | [ |
NiCo/NF | Pd/CFC | 7 mol/L KOH+0.5 mol/L urea | 2 mol/L H2O2+2 mol/L H2SO4 | 17.4 | 20 | [ |
Ni-Se/NF | Prussian blue | 1 mol/L KOH+0.5 mol/L urea | 2 mol/L H2O2+2 mol/L H2SO4 | 33 | 20 | [ |
Ni-120/VC | Pt/C | 7 mol/L KOH+0.33 mol/L urea | 2 mol/L H2O2+2 mol/L H2SO4 | 36.4 | 70 | [ |
Ni0.8Co0.2(OH)2 | Pt/C | 5 mol/L KOH+0.5 mol/L urea | 2 mol/L H2O2+2 mol/L H2SO4 | 11.2 | 20 | [ |
Ni6Cr4-CNT@C | Pt/C | 5 mol/L KOH+1 mol/L urea | 2 mol/L H2O2+2 mol/L H2SO4 | 48.1 | 80 | [ |
Pt | Graphite | 1 mol/L KOH+0.3 mol/L urea | 0.65 mol/L AgNO3 | 0.91 | Room temperature | [ |
Ni/CC | CC | Fresh urine | 50 mg/L Cr(Ⅵ)+0.25 mol/L H2SO4 | 0.34 | 20 | [ |
Pd-Ni/C | Pd/C | 1 mol/L KOH+0.33 mol/L urea | O2 | 1.12 | Room temperature | [ |
Ni/CNT@sponge | Pt/C | 3 mol/L KOH+3 mol/L urea | 1.5 mol/L H2SO4 | 6.6 | 45 | [ |
Ni nanorods/NF | Prussian blue | 1 mol/L NaOH+0.33 mol/L urea | 2 mol/L H2O2+2 mol/L KCl+ 2 mol/L H2SO4 | 10.6 | 20 | [ |
Ni-Co NWAs | Pd/CFC | 5 mol/L KOH+0.33 mol/L urea | 2 mol/L H2O2+2 mol/L H2SO4 | 5.03 | 25 | [ |
Ni-P HPNG-40 | Pt net | 9 mol/L KOH+0.5 mol/L urea | 2 mol/L H2O2+2 mol/L H2SO4 | 38.15 | 60 | [ |
1 | SINGH R K, RAJAVELU K, MONTAG M, et al. Advances in catalytic electrooxidation of urea: a review[J]. Energy Technol, 2021, 9(8): 2100017. |
2 | KAMEDA T, ITO S, YOSHIOKA T. Kinetic and equilibrium studies of urea adsorption onto activated carbon: adsorption mechanism[J]. J Dispersion Sci Technol, 2017, 38(7): 1063-1066. |
3 | LEI T, GUO X, MA J, et al. Kinetics and thermodynamics of urea hydrolysis under the coupling of nitrogen application rate and temperature[J]. Environ Sci Pollut Res, 2018, 25(25): 25413-25419. |
4 | VON AHNEN M, PEDERSEN L F, PEDERSEN P B, et al. Degradation of urea, ammonia and nitrite in moving bed biofilters operated at different feed loadings[J]. Aquac Eng, 2015, 69: 50-59. |
5 | URBAŃCZYK E, SOWA M, SIMKA W. Urea removal from aqueous solutions-a review[J]. J Appl Electrochem, 2016, 46(10): 1011-1029. |
6 | ZHENG S, ZHENG Y, XUE H, et al. Ultrathin nickel terephthalate nanosheet three-dimensional aggregates with disordered layers for highly efficient overall urea electrolysis[J]. Chem Eng J, 2020, 395: 125166. |
7 | CAO J, JIAO Z, ZHU R, et al. Enhancing hydrogen evolution through urea electrolysis over Co-doped Ni-P-O film on nickel foam[J]. J Alloys Compd, 2022, 914: 165362. |
8 | BOGGS B K, KING R L, BOTTE G G. Urea electrolysis: direct hydrogen production from urine[J]. Chem Commun, 2009, (32): 4859-4861. |
9 | NGUYEN P K T, KIM J, YOON Y S, et al. Mathematical modeling of a direct urea fuel cell[J]. Int J Hydrogen Energy, 2023, 48(6): 2314-2327. |
10 | LAN R, TAO S, IRVINE J T S. A direct urea fuel cell-power from fertiliser and waste[J]. Energy Environ Sci, 2010, 3(4): 438-441. |
11 | SUN H, LIU J, KIM H, et al. Ni-doped CuO nanoarrays activate urea adsorption and stabilizes reaction intermediates to achieve high-performance urea oxidation catalysts[J]. Adv Sci, 2022, 9(34): 2204800. |
12 | SIMKA W, PIOTROWSKI J, NAWRAT G. Influence of anode material on electrochemical decomposition of urea[J]. Electrochim Acta, 2007, 52(18): 5696-5703. |
13 | TONG Y, CHEN P, ZHANG M, et al. Oxygen vacancies confined in nickel molybdenum oxide porous nanosheets for promoted electrocatalytic urea oxidation[J]. ACS Catal, 2018, 8(1): 1-7. |
14 | LU S, HUMMEL M, GU Z, et al. Highly efficient urea oxidation via nesting nano-nickel oxide in eggshell membrane-derived carbon[J]. ACS Sustainable Chem Eng, 2021, 9(4): 1703-1713. |
15 | LU X F, ZHANG S L, SIM W L, et al. Phosphorized CoNi2S4 yolk-shell spheres for highly efficient hydrogen production via water and urea electrolysis[J]. Angew Chem Int Ed, 2021, 60(42): 22885-22891. |
16 | MAI W, CUI Q, ZHANG Z, et al. Coaxial Ni3S2@CoMoS4/NiFeOOH nanorods for energy-saving water splitting and urea electrolysis[J]. Int J Hydrogen Energy, 2021, 46(47): 24078-24093. |
17 | SUÁREZ D, DÍAZ N, MERZ K M. Ureases: Quantum chemical calculations on cluster models[J]. J Am Chem Soc, 2003, 125(50): 15324-15337. |
18 | ESTIU G, MERZ K M. Enzymatic catalysis of urea decomposition: elimination or hydrolysis?[J]. J Am Chem Soc, 2004, 126(38): 11832-11842. |
19 | 王留留, 任洁, 卢星宇, 等. 尿素分解制氢催化剂研究进展[J]. 材料导报, 2023(12): 1-24. |
WANG L L, REN J, LU X Y, et al. Research progress of urea splitting catalysts for hydrogen generation[J]. Mater Rep, 2023(12): 1-24. | |
20 | 徐秀娟, 张清硕, 国通, 等. 过渡金属磷化物纳米材料催化尿素电解制氢研究进展[J]. 化学研究, 2022, 33(1): 1-8. |
XU X, ZHANG Q, GUO T, et al. Recent advances in transition metal phosphide nanomaterials for hydrogen production by urea electrolysis[J]. Chem Res, 2022, 33(1): 1-8. | |
21 | 向阳, 熊昆, 张海东, 等. 电催化尿素氧化的镍基催化剂表界面调控[J]. 材料导报, 2022, 36(10): 20080297-20080298. |
XIANG Y, XIONG K, ZHANG H, et al. Surface interface regulation of nickel-based catalysts for electrocatalytic urea oxidation[J]. Mater Rep, 2022, 36(10): 20080297-20080298. | |
22 | HU S, WU H, FENG C, et al. Synthesis of non-noble NiMoO4-Ni(OH)2/NF bifunctional electrocatalyst and its application in water-urea electrolysis[J]. Int J Hydrogen Energy, 2020, 45(41): 21040-21050. |
23 | KAPAŁKA A, CALLY A, NEODO S, et al. Electrochemical behavior of ammonia at Ni/Ni(OH)2 electrode[J]. Electrochem Commun, 2010, 12(1): 18-21. |
24 | VEDHARATHINAM V, BOTTE G G. Understanding the electro-catalytic oxidation mechanism of urea on nickel electrodes in alkaline medium[J]. Electrochim Acta, 2012, 81: 292-300. |
25 | PUTRI Y M T A, GUNLAZUARDI J, YULIZAR Y, et al. Recent progress in direct urea fuel cell[J]. Open Chem, 2021, 19(1): 1116-1133. |
26 | VEDHARATHINAM V, BOTTE G G. Experimental investigation of potential oscillations during the electrocatalytic oxidation of urea on Ni catalyst in alkaline medium[J]. J Phys Chem C, 2014, 118(38): 21806-21812. |
27 | WANG D, BOTTE G G. In situ X-ray diffraction study of urea electrolysis on nickel catalysts[J]. ECS Electrochem Lett, 2014, 3(9): H29. |
28 | VEDHARATHINAM V, BOTTE G G. Direct evidence of the mechanism for the electro-oxidation of urea on Ni(OH)2 catalyst in alkaline medium[J]. Electrochim Acta, 2013, 108: 660-665. |
29 | GUO F, YE K, DU M, et al. Electrochemical impedance analysis of urea electro-oxidation mechanism on nickel catalyst in alkaline medium[J]. Electrochim Acta, 2016, 210: 474-482. |
30 | GENG S, ZHENG Y, LI S, et al. Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst[J]. Nat Energy, 2021, 6(9): 904-912. |
31 | LI J, LI J, LIU T, et al. Deciphering and suppressing over-oxidized nitrogen in nickel-catalyzed urea electrolysis[J]. Angew Chem Int Ed, 2021, 60(51): 26656-26662. |
32 | CHEN W, XU L, ZHU X, et al. Unveiling the electrooxidation of urea: intramolecular coupling of the N—N bond[J]. Angew Chem Int Ed, 2021, 60(13): 7297-7307. |
33 | LIU H, LIU Z, FENG L. Bonding state synergy of the NiF2/Ni2P hybrid with the co-existence of covalent and ionic bonds and the application of this hybrid as a robust catalyst for the energy-relevant electrooxidation of water and urea[J]. Nanoscale, 2019, 11(34): 16017-16025. |
34 | FANG Y, LIU Z. Tafel kinetics of electrocatalytic reactions: from experiment to first-principles[J]. ACS Catal, 2014, 4(12): 4364-4376. |
35 | MEDDINGS N, HEINRICH M, OVERNEY F, et al. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: a review[J]. J Power Sources, 2020, 480: 228742. |
36 | LI J, CHANG Y, LI D, et al. Efficient synergism of V2O5 and Pd for alkaline methanol electrooxidation[J]. Chem Commun, 2021, 57(57): 7035-7038. |
37 | WANG K, HUANG W, CAO Q, et al. Engineering NiF3/Ni2P heterojunction as efficient electrocatalysts for urea oxidation and splitting[J]. Chem Eng J, 2022, 427: 130865. |
38 | BAO Y, LIU H, LIU Z, et al. Pd/FeP catalyst engineering via thermal annealing for improved formic acid electrochemical oxidation[J]. Appl Catal B: Environ, 2020, 274: 119106. |
39 | ESCUDERO-ESCRIBANO M, VERDAGUER-CASADEVALL A, MALACRIDA P, et al. Pt5Gd as a highly active and stable catalyst for oxygen electroreduction[J]. J Am Chem Soc, 2012, 134(40): 16476-16479. |
40 | ZHENG J, SHENG W, ZHUANG Z, et al. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy[J]. Sci Adv, 2016, 2(3): e1501602. |
41 | ZHAO X, WANG Y, ZHANG Y, et al. Ni-Fe layered double hydroxide nanosheets supported on exfoliated graphite for efficient urea oxidation in direct urea fuel cells[J]. ChemSusChem, 2022, 15(7): e202102614. |
42 | CHEN N, DU Y X, ZHANG G, et al. Amorphous nickel sulfoselenide for efficient electrochemical urea-assisted hydrogen production in alkaline media[J]. Nano Energy, 2021, 81: 105605. |
43 | ZHANG Y, GAO L, HENSEN E J M, et al. Evaluating the stability of Co2P electrocatalysts in the hydrogen evolution reaction for both acidic and alkaline electrolytes[J]. ACS Energy Lett, 2018, 3(6): 1360-1365. |
44 | MCCRORY C C L, JUNG S, PETERS J C, et al. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction[J]. J Am Chem Soc, 2013, 135(45): 16977-16987. |
45 | CHEN J, LI H, PEI Z, et al. Catalytic activity atlas of ternary Co-Fe-V metal oxides for the oxygen evolution reaction[J]. J Mater Chem A, 2020, 8(31): 15951-15961. |
46 | WANG L, LI M, HUANG Z, et al. Ni-WC/C nanocluster catalysts for urea electrooxidation[J]. J Power Sources, 2014, 264: 282-289. |
47 | WANG D, YAN W, VIJAPUR S H, et al. Enhanced electrocatalytic oxidation of urea based on nickel hydroxide nanoribbons[J]. J Power Sources, 2012, 217: 498-502. |
48 | ZUBAIR M, ULHASSAN M M, MEHRAN M T, et al. 2D MXenes and their heterostructures for HER, OER and overall water splitting: a review[J]. Int J Hydrogen Energy, 2022, 47(5): 2794-2818. |
49 | ZHU W, YUE Z, ZHANG W, et al. Wet-chemistry topotactic synthesis of bimetallic iron-nickel sulfide nanoarrays: an advanced and versatile catalyst for energy efficient overall water and urea electrolysis[J]. J Mater Chem A, 2018, 6(10): 4346-4353. |
50 | CAO Q, HUANG W, SHOU J, et al. Coupling dual-phased nickel selenides with N-doped carbon enables efficient urea electrocatalytic oxidation[J]. J Colloid Interface Sci, 2023, 629: 33-43. |
51 | UDERT K M, LARSEN T A, BIEBOW M, et al. Urea hydrolysis and precipitation dynamics in a urine-collecting system[J]. Water Res, 2003, 37(11): 2571-2582. |
52 | LI J, WANG S, CHANG J, et al. A review of Ni based powder catalyst for urea oxidation in assisting water splitting reaction[J]. Adv Powder Mater, 2022, 1(3): 100030. |
53 | MA G, XUE Q, ZHU J, et al. Ultrafine Rh nanocrystals decorated ultrathin NiO nanosheets for urea electro-oxidation[J]. Appl Catal B, 2020, 265: 118567. |
54 | SHA L, YE K, WANG G, et al. Rational design of NiCo2S4 nanowire arrays on nickle foam as highly efficient and durable electrocatalysts toward urea electrooxidation[J]. Chem Eng J, 2019, 359: 1652-1658. |
55 | YANG D, GU Y, YU X, et al. Nanostructured Ni2P-C as an efficient catalyst for urea electrooxidation[J]. ChemElectroChem, 2018, 5(4): 659-664. |
56 | LI Y, JIANG H, CUI Z, et al. Spin state tuning of the octahedral sites in Ni-Co-based spinel toward highly efficient urea oxidation reaction[J]. J Phys Chem C, 2021, 125(17): 9190-9199. |
57 | YANG X, LV Y, HU J, et al. A three-dimensional nanostructure of NiFe(OH) x nanoparticles/nickel foam as an efficient electrocatalyst for urea oxidation[J]. RSC Adv, 2021, 11(28): 17352-17359. |
58 | LI J, WANG S, SUN S, et al. A review of hetero-structured Ni-based active catalysts for urea electrolysis[J]. J Mater Chem A, 2022, 10(17): 9308-9326. |
59 | LI J, ZHANG J, YANG J H. Research progress and applications of nickel-based catalysts for electrooxidation of urea[J]. Int J Hydrogen Energy, 2022, 47(12): 7693-7712. |
60 | XIA L, LIAO Y, QING Y, et al. In situ growth of porous ultrathin Ni(OH)2 nanostructures on nickel foam: an efficient and durable catalysts for urea electrolysis[J]. ACS Appl Energy Mater, 2020, 3(3): 2996-3004. |
61 | LI R, LIU Q, ZHOU Y, et al. 3D self-supported porous vanadium-doped nickel nitride nanosheet arrays as efficient bifunctional electrocatalysts for urea electrolysis[J]. J Mater Chem A, 2021, 9(7): 4159-4166. |
62 | ZHANG Q, KAZIM F M D, MA S, et al. Nitrogen dopants in nickel nanoparticles embedded carbon nanotubes promote overall urea oxidation[J]. Appl Catal B: Environ, 2021, 280: 119436. |
63 | YUAN M, GUO X, LI N, et al. Silicon oxide-protected nickel nanoparticles as biomass-derived catalysts for urea electro-oxidation[J]. J Colloid Interface Sci, 2021, 589: 56-64. |
64 | ZHANG J, XING F, ZHANG H, et al. Ultrafine NiFe clusters anchored on N-doped carbon as bifunctional electrocatalysts for efficient water and urea oxidation[J]. Dalton Trans, 2020, 49(40): 13962-13969. |
65 | CAO Z, ZHOU T, MA X, et al. Hydrogen production from urea sewage on nife-based porous electrocatalysts[J]. ACS Sustainable Chem Eng, 2020, 8(29): 11007-11015. |
66 | LV Z, LI Z, TAN X, et al. One-step electrodeposited NiFeMo hybrid film for efficient hydrogen production via urea electrolysis and water splitting[J]. Appl Surf Sci, 2021, 552: 149514. |
67 | ZHAO Z, ZHAO J, WANG H, et al. Porous flower-like nickel nitride as highly efficient bifunctional electrocatalysts for less energy-intensive hydrogen evolution and urea oxidation[J]. Int J Hydrogen Energy, 2020, 45(28): 14199-14207. |
68 | TONG Y, CHEN L, DYSON P J, et al. Boosting hydrogen production via urea electrolysis on an amorphous nickel phosphide/graphene hybrid structure[J]. J Mater Sci, 2021, 56(31): 17709-17720. |
69 | ZHAO Z, YANG L, WANG Z, et al. Ni3S2/MWCNTs/NF hybrid nanostructure as effective bifunctional electrocatalysts for urea electrolysis assisted hydrogen evolution[J]. J Electrochem Soc, 2020, 167(12): 126514. |
70 | WU T H, LIN Y C, HOU B W, et al. Nanostructured β-NiS catalyst for enhanced and stable electro-oxidation of urea[J]. Catalysts, 2020, 10(11): 1280. |
71 | ZHAO L, CHANG Y, JIA M, et al. Monodisperse Ni0·85Se nanocrystals on rGO for high-performance urea electrooxidation[J]. J Alloys Compd, 2021, 852: 156751. |
72 | JI X, ZHANG Y, MA Z, et al. Oxygen vacancy-rich Ni/NiO@NC nanosheets with schottky heterointerface for efficient urea oxidation reaction[J]. ChemSusChem, 2020, 13(18): 5004-5014. |
73 | QIAN G, CHEN J, LUO L, et al. Novel bifunctional V2O3 nanosheets coupled with N-doped-carbon encapsulated Ni heterostructure for enhanced electrocatalytic oxidation of urea-rich wastewater[J]. ACS Appl Mater Interfaces, 2020, 12(34): 38061-38069. |
74 | LIU Z, ZHANG C, LIU H, et al. Efficient synergism of NiSe2 nanoparticle/NiO nanosheet for energy-relevant water and urea electrocatalysis[J]. Appl Catal B: Environ, 2020, 276: 119165. |
75 | XU H, YE K, ZHU K, et al. Transforming carnation-shaped MOF-Ni to Ni-Fe prussian blue analogue derived efficient bifunctional electrocatalyst for urea electrolysis[J]. ACS Sustainable Chem Eng, 2020, 8(42): 16037-16045. |
76 | KING R L, BOTTE G G. Investigation of multi-metal catalysts for stable hydrogen production via urea electrolysis[J]. J Power Sources, 2011, 196(22): 9579-9584. |
77 | MILLER A T, HASSLER B L, BOTTE G G. Rhodium electrodeposition on nickel electrodes used for urea electrolysis[J]. J Appl Electrochem, 2012, 42(11): 925-934. |
78 | SUN H, ZHANG W, LI J, et al. Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis[J]. Appl Catal B: Environ, 2021, 284: 119740. |
79 | XU Q, QIAN G, YIN S, et al. Design and synthesis of highly performing bifunctional Ni-NiO-MoNi hybrid catalysts for enhanced urea oxidation and hydrogen evolution reactions[J]. ACS Sustain Chem Eng, 2020, 8(18): 7174-7181. |
80 | WANG T, WU H, FENG C, et al. MoP@NiCo-LDH on nickel foam as bifunctional electrocatalyst for high efficiency water and urea-water electrolysis[J]. J Mater Chem A, 2020, 8(35): 18106-18116. |
81 | GUO T, XU X, WANG X, et al. Enabling the full exposure of Fe2P@NixP heterostructures in tree-branch-like nanoarrays for promoted urea electrolysis at high current densities[J]. Chem Eng J, 2021, 417: 128067. |
82 | LI R, WAN X, CHEN B, et al. Hierarchical Ni3N/Ni0.2Mo0.8N heterostructure nanorods arrays as efficient electrocatalysts for overall water and urea electrolysis[J]. Chem Eng J, 2021, 409: 128240. |
83 | PATIL K, BABAR P, BAE H, et al. Enhanced electrocatalytic activity of a layered triple hydroxide (LTH) by modulating the electronic structure and active sites for efficient and stable urea electrolysis[J]. Sustain Energy Fuels, 2022, 6(2): 474-483. |
84 | ZHANG J, HUANG S, NING P, et al. Nested hollow architectures of nitrogen-doped carbon-decorated Fe, Co, Ni-based phosphides for boosting water and urea electrolysis[J]. Nano Res, 2022, 15(3): 1916-1925. |
85 | PAN Y, SUN K, LIN Y, et al. Electronic structure and D-band center control engineering over M-doped CoP (M=Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production[J]. Nano Energy, 2019, 56: 411-419. |
86 | ZHANG J Y, HE T, WANG M, et al. Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array[J]. Nano Energy, 2019, 60: 894-902. |
87 | XU H, YE K, YIN J, et al. In situ growth of ZIF67 at the edge of nanosheet transformed into yolk-shell CoSe2 for high efficiency urea electrolysis[J]. J Power Sources, 2021, 491: 229592. |
88 | WANG J, SUN Y, QI Y, et al. Vanadium-doping and interface engineering for synergistically enhanced electrochemical overall water splitting and urea electrolysis[J]. ACS Appl Mater Interfaces, 2021, 13(48): 57392-57402. |
89 | WANG Y, WANG C, SHANG H, et al. Self-driven Ru-modified NiFe MOF nanosheet as multifunctional electrocatalyst for boosting water and urea electrolysis[J]. J Colloid Interface Sci, 2022, 605: 779-789. |
90 | SONG M, ZHANG Z, LI Q, et al. Ni-foam supported Co(OH)F and Co-P nanoarrays for energy-efficient hydrogen production via urea electrolysis[J]. J Mater Chem A, 2019, 7(8): 3697-3703. |
91 | XU X, GUO T, XIA J, et al. Modulation of the crystalline/amorphous interface engineering on Ni-P-O-based catalysts for boosting urea electrolysis at large current densities[J]. Chem Eng J, 2021, 425: 130514. |
92 | LI J, SUN S, YANG Y, et al. An efficient heterogeneous Ni/Ni2P catalyst for urea-assisted water electrolysis[J]. Chem Commun, 2022, 58(68): 9552-9555. |
93 | TABASSUM H, MAHMOOD A, ZHU B, et al. Recent advances in confining metal-based nanoparticles into carbon nanotubes for electrochemical energy conversion and storage devices[J]. Energy Environ Sci, 2019, 12(10): 2924-2956. |
94 | BASUMATARY P, KONWAR D, YOON Y S. A novel NiCu/ZnO@MWCNT anode employed in urea fuel cell to attain superior performances[J]. Electrochim Acta, 2018, 261: 78-85. |
95 | XU W, WU Z, TAO S. Urea-based fuel cells and electrocatalysts for urea oxidation[J]. Energy Technol, 2016, 4(11): 1329-1337. |
96 | SAYED E T, EISA T, MOHAMED H O, et al. Direct urea fuel cells: challenges and opportunities[J]. J Power Sources, 2019, 417: 159-175. |
97 | TRAN M H, PARK B J, KIM B H, et al. Mesoporous silica template-derived nickel-cobalt bimetallic catalyst for urea oxidation and its application in a direct urea/H2O2 fuel cell[J]. Int J Hydrogen Energy, 2020, 45(3): 1784-1792. |
98 | SAFEER N. K M, ALEX C, JANA R, et al. Remarkable COx tolerance of Ni3+ active species in a Ni2O3 catalyst for sustained electrochemical urea oxidation[J]. J Mater Chem A, 2022, 10(8): 4209-4221. |
99 | ZHANG C, LIANG P, YANG X, et al. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell[J]. Biosens Bioelectron, 2016, 81: 32-38. |
100 | SAYED E T, ABDELKAREEM M A, BAHAA A, et al. Synthesis and performance evaluation of various metal chalcogenides as active anodes for direct urea fuel cells[J]. Renew Sustainable Energy Rev, 2021, 150: 111470. |
101 | ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271. |
102 | ZHU X, DOU X, DAI J, et al. Metallic nickel hydroxide nanosheets give superior electrocatalytic oxidation of urea for fuel cells[J]. Angew Chem Int Ed, 2016, 55(40): 12465-12469. |
103 | ABDELKAREEM M A, SAYED E T, MOHAMED H O, et al. Nonprecious anodic catalysts for low-molecular-hydrocarbon fuel cells: theoretical consideration and current progress[J]. Prog Energy Combust Sci, 2020, 77: 100805. |
104 | TRAN T Q N, PARK B J, YUN W H, et al. Metal-organic framework-derived Ni@C and NiO@C as anode catalysts for urea fuel cells[J]. Sci Rep, 2020, 10(1): 278. |
105 | WANG Y, LIU G. Reduced graphene oxide supported nickel tungstate nano-composite electrocatalyst for anodic urea oxidation reaction in direct urea fuel cell[J]. Int J Hydrogen Energy, 2020, 45(58): 33500-33511. |
106 | RANJANI M, SENTHILKUMAR N, GNANA KUMAR G, et al. 3D flower-like hierarchical NiCo2O4 architecture on carbon cloth fibers as an anode catalyst for high-performance, durable direct urea fuel cells[J]. J Mater Chem A, 2018, 6(45): 23019-23027. |
107 | SENTHILKUMAR N, GNANA KUMAR G, MANTHIRAM A. 3D hierarchical core-shell nanostructured arrays on carbon fibers as catalysts for direct urea fuel cells[J]. Adv Energy Mater, 2018, 8(6): 1702207. |
108 | TESFAYE R M, DAS G, PARK B J, et al. Ni-Co bimetal decorated carbon nanotube aerogel as an efficient anode catalyst in urea fuel cells[J]. Sci Rep, 2019, 9(1): 479. |
109 | GLASS D E, GALVAN V, PRAKASH G K S. The effect of annealing temperature on nickel on reduced graphene oxide catalysts on urea electrooxidation[J]. Electrochim Acta, 2017, 253: 489-497. |
110 | LI B, SONG C, YIN J, et al. Effect of graphene on the performance of nickel foam-based CoNi nanosheet anode catalyzed direct urea-hydrogen peroxide fuel cell[J]. Int J Hydrogen Energy, 2020, 45(17): 10569-10579. |
111 | LI B, SONG C, RONG J, et al. A new catalyst for urea oxidation: NiCo2S4 nanowires modified 3D carbon sponge[J]. J Energy Chem, 2020, 50: 195-205. |
112 | YE K, ZHANG H, ZHAO L, et al. Facile preparation of three-dimensional Ni(OH)2/Ni foam anode with low cost and its application in a direct urea fuel cell[J]. New J Chem, 2016, 40(10): 8673-8680. |
113 | GUO F, CAO D, DU M, et al. Enhancement of direct urea-hydrogen peroxide fuel cell performance by three-dimensional porous nickel-cobalt anode[J]. J Power Sources, 2016, 307: 697-704. |
114 | TRAN M H, PARK B J, YOON H H. A highly active Ni-based anode material for urea electrocatalysis by a modified sol-gel method[J]. J Colloid Interface Sci, 2020, 578: 641-649. |
115 | KIM B, DAS G, PARK B J, et al. A free-standing NiCr-CNT@C anode mat by electrospinning for a high-performance urea/H2O2 fuel cell[J]. Electrochim Acta, 2020, 354: 136657. |
116 | CHINO I, MUNEEB O, DO E, et al. A paper microfluidic fuel cell powered by urea[J]. J Power Sources, 2018, 396: 710-714. |
117 | XU W, ZHANG H, LI G, et al. A urine/Cr(VI) fuel cell-electrical power from processing heavy metal and human urine[J]. J Electroanal Chem, 2016, 764: 38-44. |
118 | YOON J, LEE D, LEE Y N, et al. Solid solution palladium-nickel bimetallic anode catalysts by co-sputtering for direct urea fuel cells (DUFC)[J]. J Power Sources, 2019, 431: 259-264. |
119 | ZHANG H, WANG Y, WU Z, et al. A direct urea microfluidic fuel cell with flow-through Ni-supported-carbon- nanotube-coated sponge as porous electrode[J]. J Power Sources, 2017, 363: 61-69. |
120 | EISA T, PARK S G, MOHAMED H O, et al. Outstanding performance of direct urea/hydrogen peroxide fuel cell based on precious metal-free catalyst electrodes[J]. Energy, 2021, 228: 120584. |
121 | GUO F, CHENG K, YE K, et al. Preparation of nickel-cobalt nanowire arrays anode electro-catalyst and its application in direct urea/hydrogen peroxide fuel cell[J]. Electrochim Acta, 2016, 199: 290-296. |
122 | PEI C, CHEN S, ZHOU M, et al. Direct urea/H2O2 fuel cell with a hierarchical porous nanoglass anode for high-efficiency energy conversion[J]. ACS Appl Mater Interfaces, 2023, 15(20): 24319-24328. |
[1] | 罗二桂, 唐涛, 王艺, 张俊明, 常宇虹, 胡天军, 贾建峰. 两电子氧还原制备过氧化氢:贵金属催化剂的几何与电子结构调控的研究进展[J]. 应用化学, 2023, 40(8): 1063-1076. |
[2] | 董以宁, 李赫, 宫雪, 韩策, 宋平, 徐维林. 非Pt基催化剂在质子交换膜燃料电池阴极氧还原反应中的研究进展[J]. 应用化学, 2023, 40(8): 1077-1093. |
[3] | 郭颖华, 周顺发, 李静, 蔡卫卫. 过渡金属磷酸盐电解水催化剂调控策略研究进展[J]. 应用化学, 2023, 40(8): 1094-1108. |
[4] | 谭翠盈, 丁威超, 马婷婷, 肖瑶, 刘健. 超亲水/超疏气电解水催化剂的研究进展[J]. 应用化学, 2023, 40(8): 1109-1125. |
[5] | 朱凤, 彭小连, 张文彬. 质子给受体对电催化反应影响的研究进展[J]. 应用化学, 2023, 40(5): 666-680. |
[6] | 刘明言, 石秀顶, 李天国, 王静. 电化学分析方法检测重金属离子研究进展[J]. 应用化学, 2023, 40(4): 463-475. |
[7] | 周锐, 张自品. 生物样品中小檗碱的电化学分析新方法[J]. 应用化学, 2023, 40(4): 518-526. |
[8] | 张晓萍, 张思月, 汪明畅, 张钰桐, 苗莎菻, 王瑜, 孙伟. 原位电化学与核磁共振联用新技术及其应用进展[J]. 应用化学, 2023, 40(3): 317-328. |
[9] | 王路飞, 甄蒙蒙, 沈伯雄. 贫电解液下电催化剂对调控锂硫电池性能的研究进展[J]. 应用化学, 2023, 40(2): 188-209. |
[10] | 石雪建, 刘万强, 王春丽, 程勇, 王立民. 钾离子电池用Sb基负极材料研究进展[J]. 应用化学, 2023, 40(2): 210-228. |
[11] | 曹蓉, 夏杰桢, 廖漫华, 赵路超, 赵晨, 吴琪. 单原子催化剂在电化学合成氨中的理论研究进展[J]. 应用化学, 2023, 40(1): 9-23. |
[12] | 谷欣, 王文庆, 侯钧贺, 高露, 黄明华, 苏革. 无机-无机复合电致变色材料的研究进展[J]. 应用化学, 2022, 39(9): 1345-1359. |
[13] | 李德, 王楠, 杨华伟, 马姣. 液态金属原位引发制备半互穿网络水凝胶构建低污染电化学传感界面[J]. 应用化学, 2022, 39(9): 1464-1474. |
[14] | 王显, 杨小龙, 马荣鹏, 刘长鹏, 葛君杰, 邢巍. 单原子分散的Ir-N-C燃料电池阳极抗中毒催化剂[J]. 应用化学, 2022, 39(8): 1202-1208. |
[15] | 解冠宇, 李茂. 拓扑结构不同金属有机聚合物的电化学聚合行为和光谱电化学性质[J]. 应用化学, 2022, 39(8): 1246-1251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||