应用化学 ›› 2023, Vol. 40 ›› Issue (7): 938-950.DOI: 10.19894/j.issn.1000-0518.230009
汤振春, 周新全, 王佩佩, 苗娟, 张宁, 张瑞昌, 魏学锋()
收稿日期:
2023-01-15
接受日期:
2023-05-23
出版日期:
2023-07-01
发布日期:
2023-07-19
通讯作者:
魏学锋
基金资助:
Zhen-Chun TANG, Xin-Quan ZHOU, Pei-Pei WANG, Juan MIAO, Ning ZHANG, Rui-Chang ZHANG, Xue-Feng WEI()
Received:
2023-01-15
Accepted:
2023-05-23
Published:
2023-07-01
Online:
2023-07-19
Contact:
Xue-Feng WEI
About author:
xfwei@haust.edu.cnSupported by:
摘要:
金属有机框架(MOFs)材料作为一种新兴的多功能材料,因其高的比表面积、可调的孔隙结构、优异的热稳定性和化学稳定性等优势,在催化活化高级氧化水处理领域引起越来越多关注。本综述聚焦于近5年MOFs基催化剂活化过硫酸盐在水处理领域的研究进展。汇总了过硫酸盐活化领域中的各类MOFs基催化剂;介绍了过硫酸盐活化中MOFs基催化剂的常用合成方法; 归纳了MOFs基催化剂在活化过硫酸盐过程中的氧化机制; 总结了MOFs基催化剂的常见改性方法; 最后,对MOFs基催化剂活化过硫酸盐未来研究方向提出了几点建议。有助于加深对MOFs基催化剂活化过硫酸盐降解有机污染物的认识,为开发基于过硫酸盐活化的MOFs基新型非均相催化剂提供理论参考。
中图分类号:
汤振春, 周新全, 王佩佩, 苗娟, 张宁, 张瑞昌, 魏学锋. MOFs基催化剂活化过硫酸盐在废水处理中的研究进展[J]. 应用化学, 2023, 40(7): 938-950.
Zhen-Chun TANG, Xin-Quan ZHOU, Pei-Pei WANG, Juan MIAO, Ning ZHANG, Rui-Chang ZHANG, Xue-Feng WEI. Research Progress of Activated Persulfate by MOFs-Based Catalyst in Wastewater Treatment[J]. Chinese Journal of Applied Chemistry, 2023, 40(7): 938-950.
MOFs-based catalyst | Strengths | Precursor | Catalyst | Contaminant | Ref. |
---|---|---|---|---|---|
MILs catalysts | Porosity, large surface area and unsaturated metal coordination | MIL-88A(Fe) | MIL-88A(Fe)/MoS2 | Bisphenol A | [ |
MIL-88B(Fe) | MGA | Norfloxacin | [ | ||
MIL-53(Fe) | MIL-53(Fe)/BiOCl | Rhodamine B | [ | ||
MIL-101(Fe) | CuS@MIL-101(Fe) | Coumarin | [ | ||
MIL-53(Fe) | Mn-MIL-53(Fe) | Tetracycline | [ | ||
MIL-101(Fe) | g-C3N4/MIL-101(Fe) | Bisphenol A | [ | ||
ZIFs catalysts | Good thermal and chemical stability | ZIF-8 | Fe3O4-MnO2-ZIF-8 | Bisphenol A | [ |
ZIF-67 | ZIF-67 | Rhodamine B | [ | ||
ZIF-9 | ZIF-9 | Rhodamine B | [ | ||
ZIF-12 | ZIF-12 | Rhodamine B | [ | ||
n-BTCs catalysts | Contains Lewis acid active sites | Co-BTC | Co-BTC(A) Co-BTC(B) | Dibutyl phthalate | [ |
HKUST-1 | HKUST-1 | Rhodamine B | [ |
表 1 过硫酸盐活化领域中MOFs基催化剂
Table 1 Summary of MOFs-based catalyst in the field of persulfate activation
MOFs-based catalyst | Strengths | Precursor | Catalyst | Contaminant | Ref. |
---|---|---|---|---|---|
MILs catalysts | Porosity, large surface area and unsaturated metal coordination | MIL-88A(Fe) | MIL-88A(Fe)/MoS2 | Bisphenol A | [ |
MIL-88B(Fe) | MGA | Norfloxacin | [ | ||
MIL-53(Fe) | MIL-53(Fe)/BiOCl | Rhodamine B | [ | ||
MIL-101(Fe) | CuS@MIL-101(Fe) | Coumarin | [ | ||
MIL-53(Fe) | Mn-MIL-53(Fe) | Tetracycline | [ | ||
MIL-101(Fe) | g-C3N4/MIL-101(Fe) | Bisphenol A | [ | ||
ZIFs catalysts | Good thermal and chemical stability | ZIF-8 | Fe3O4-MnO2-ZIF-8 | Bisphenol A | [ |
ZIF-67 | ZIF-67 | Rhodamine B | [ | ||
ZIF-9 | ZIF-9 | Rhodamine B | [ | ||
ZIF-12 | ZIF-12 | Rhodamine B | [ | ||
n-BTCs catalysts | Contains Lewis acid active sites | Co-BTC | Co-BTC(A) Co-BTC(B) | Dibutyl phthalate | [ |
HKUST-1 | HKUST-1 | Rhodamine B | [ |
图3 几种典型MOFs基催化剂活化过硫酸盐的氧化机制图。 (A) Co3O4@ MOFs纳米反应器中SO4?- 参与降解的可能机制图[56]; (B) MIL-100(Fe)上·OH产生过程[57]; (C) Cu-TCPP(BA)-MOF/PMS/Vis体系中的1O2参与降解的机理示意图[44]; (D) Fe-MOF-74@SiO2活化PS产生SO4?- 和·OH的可能机制图[58]
Fig.3 Oxidation mechanism diagram of activated persulfate from several typical MOFs-based catalyst. (A) Possible mechanism diagram of SO4?- participating in the degradation of 4-chlorophenol in Co3O4@ MOFs nanoreactor[56]; (B) The ·OH production on MIL-100(Fe)[57]; (C) Schematic diagram of 1O2 participating in degradation in Cu-TCPP(BA)-MOF/PMS/Vis system[44]; (D) Fe-MOF-74@SiO2 diagram of possible mechanism of activation of PS to produce SO4?- and ·OH[58]
Catalyst | Precursor | Contaminant | Oxidant | Removal rate/% | ROS | Ref. |
---|---|---|---|---|---|---|
M/Z2 | ZIF-67 MIL-101(Fe) | 2-Chlorophenol (0.78 mmol/L) | PMS(0.98 mmol/L) | 90 | SO | [ |
MSMIL | MIL-88A(Fe) | Bisphenol A (0.11 mmol/L) | PMS(1.63 mmol/L) | 98.2 | SO | [ |
CuS@MIL-101(Fe) | MIL-101(Fe) | Coumarin (0.03 mmol/L) | PMS(0.5 mmol/L) | 100 | SO | [ |
Fe3O4-MnO2-ZIF-8 | ZIF-8 | Bisphenol A (0.26 mmol/L) | PMS(0.98 mmol/L) | 100 | SO | [ |
ZIF-67/PAN | ZIF-67 | Acid yellow 17 (0.91 mmol/L) | PMS(1.63 mmol/L) | 95.1 | SO | [ |
Co-BTC(A) | Co-BTC | Dibutyl phthalate (0.018 mmol/L) | PMS(1.08 mmol/L) | 100 | SO | [ |
Cu-MOF-74/PVDF | MOF-74 | Rhodamine B (0.04 mmol/L) | PMS(1.5 mmol/L) | 97.1 | SO | [ |
表2 MOFs基催化剂及其活化过硫酸盐产生的主要活性氧物种
Table 2 MOFs-based catalysts and their activation of persulfates produce main reactive oxygen species
Catalyst | Precursor | Contaminant | Oxidant | Removal rate/% | ROS | Ref. |
---|---|---|---|---|---|---|
M/Z2 | ZIF-67 MIL-101(Fe) | 2-Chlorophenol (0.78 mmol/L) | PMS(0.98 mmol/L) | 90 | SO | [ |
MSMIL | MIL-88A(Fe) | Bisphenol A (0.11 mmol/L) | PMS(1.63 mmol/L) | 98.2 | SO | [ |
CuS@MIL-101(Fe) | MIL-101(Fe) | Coumarin (0.03 mmol/L) | PMS(0.5 mmol/L) | 100 | SO | [ |
Fe3O4-MnO2-ZIF-8 | ZIF-8 | Bisphenol A (0.26 mmol/L) | PMS(0.98 mmol/L) | 100 | SO | [ |
ZIF-67/PAN | ZIF-67 | Acid yellow 17 (0.91 mmol/L) | PMS(1.63 mmol/L) | 95.1 | SO | [ |
Co-BTC(A) | Co-BTC | Dibutyl phthalate (0.018 mmol/L) | PMS(1.08 mmol/L) | 100 | SO | [ |
Cu-MOF-74/PVDF | MOF-74 | Rhodamine B (0.04 mmol/L) | PMS(1.5 mmol/L) | 97.1 | SO | [ |
Modification method | Catalyst | Precursor | Contaminant | Oxidant | Time/min | Removal rate/% | Ref. |
---|---|---|---|---|---|---|---|
Ion doping | Mn-MIL-53(Fe) (200 mg/L) | MIL-53(Fe) | Tetracycline (30 mg/L) | PMS (0.98 mmol/L) | 60 | 93.2 | [ |
Combined functional material | CoFe2O4/ZIF-8 (50 mg/L) | ZIF-8 | Methylene blue (20 mg/L) | PMS (0.98 mmol/L) | 60 | 97.9 | [ |
Ion doping | FeCu-MOF (600 mg/L) | Fe-MOF | Methylene blue (64 mg/L) | PMS (6 mmol/L) | 30 | 100 | [ |
Functional group modification | NH2-MIL-88B(Fe) (600 mg/L) | MIL-88B(Fe) | Acid orangeⅡ(20 mg/L) | PMS (1.3 mmol/L) | 25 | 97 | [ |
Construction of core-shell structure | α-Fe2O3/ZIF-67 (100 mg/L) | ZIF-67 | Ciprofloxacin (20 mg/L) | PMS (0.65 mmol/L) | 30 | 100 | [ |
Combined functional material | Mn3O4/ZIF-8 (400 mg/L) | ZIF-8 | Rhodamine B (10 mg/L) | PMS (0.98 mmol/L) | 60 | 98 | [ |
表3 MOFs基催化剂常见改性方式及其活化PS效能比较
Table 3 Comparison of common modification methods and activation efficiency of PS in MOFs-based catalyst
Modification method | Catalyst | Precursor | Contaminant | Oxidant | Time/min | Removal rate/% | Ref. |
---|---|---|---|---|---|---|---|
Ion doping | Mn-MIL-53(Fe) (200 mg/L) | MIL-53(Fe) | Tetracycline (30 mg/L) | PMS (0.98 mmol/L) | 60 | 93.2 | [ |
Combined functional material | CoFe2O4/ZIF-8 (50 mg/L) | ZIF-8 | Methylene blue (20 mg/L) | PMS (0.98 mmol/L) | 60 | 97.9 | [ |
Ion doping | FeCu-MOF (600 mg/L) | Fe-MOF | Methylene blue (64 mg/L) | PMS (6 mmol/L) | 30 | 100 | [ |
Functional group modification | NH2-MIL-88B(Fe) (600 mg/L) | MIL-88B(Fe) | Acid orangeⅡ(20 mg/L) | PMS (1.3 mmol/L) | 25 | 97 | [ |
Construction of core-shell structure | α-Fe2O3/ZIF-67 (100 mg/L) | ZIF-67 | Ciprofloxacin (20 mg/L) | PMS (0.65 mmol/L) | 30 | 100 | [ |
Combined functional material | Mn3O4/ZIF-8 (400 mg/L) | ZIF-8 | Rhodamine B (10 mg/L) | PMS (0.98 mmol/L) | 60 | 98 | [ |
1 | JAWAD A, ZHAN K, WANG H B, et al. Tuning of persulfate activation from a free radical to a nonradical pathway through the incorporation of non-redox magnesium oxide[J]. Environ Sci Technol, 2020, 54(4): 2476-2488. |
2 | 李小娟, 廖凤珍, 叶兰妹, 等. 金属有机骨架及其衍生材料活化过硫酸盐在水处理中的应用进展[J]. 化工进展, 2019, 38(10): 4712-4721. |
LI X J, LIAO F Z, YE L M, et al. Progress in the applications of metal-organic frameworks and derivatives activate persulfate in water treatment[J]. Chem Ind Eng Prog, 2019, 38(10): 4712-4721. | |
3 | LI J L, ZHU W H, GAO Y, et al. The catalyst derived from the sulfurized Co-doped metal-organic framework (MOF) for peroxymonosulfate (PMS) activation and its application to pollutant removal[J]. Sep Purif Technol, 2022, 285: 120362. |
4 | KHAN A, ZHANG K K, TARAQQI A K A, et al. Degradation of antibiotics in aqueous media using manganese nanocatalyst-activated peroxymonosulfate[J]. J Colloid Interface Sci, 2021, 599: 805-818. |
5 | HUANG Y L, TIAN X K, NIE Y L, et al. Enhanced peroxymonosulfate activation for phenol degradation over MnO2 at pH 3.5~9.0 via Cu(Ⅱ) substitution[J]. J Hazard Mater, 2018, 360: 303-310. |
6 | WANG J L, WANG S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chem Eng J, 2018, 334: 1502-1517. |
7 | 张楠, 陈蕾. 超声活化过硫酸盐降解废水中有机污染物的研究进展[J]. 应用化工, 2021, 50(10): 2805-2808, 2813. |
ZHANG N, CHEN L. Research progress of ultrasonic activated persulfate for degradation of organic pollutants in wastewater[J]. Appl Chem Ind, 2021, 50(10): 2805-2808, 2813. | |
8 | 姜思佳, 张碧涵,单潇清, 等. 热活化过硫酸钠氧化降解水中2,4-二氯苯酚的研究[J]. 现代化工, 2019, 39(4): 94-98. |
JIANG S J, ZHANG B H, SHAN X Q, et al. Degradation of 2,4-dichlorophenol in aqueous solution by thermal activated sodium persulfate[J]. Mod Chem Ind, 2019, 39(4): 94-98. | |
9 | 张丹, 陈博凯, 晁聪, 等. 紫外光活化过硫酸盐脱色处理甲基橙染料的研究[J]. 工业水处理, 2022, 42(5): 117-124. |
ZHANG D, CHENG B K, CHAO C, et al. Decolorization treatment methyl orange dye by ultraviolet activated persulfate process[J]. Ind Water Treat, 2022, 42(5): 117-124. | |
10 | 朱睿, 谭烨, 李春全, 等. 基于过渡金属活化的过硫酸盐高级氧化技术研究进展[J]. 化工矿物与加工, 2022, 51(1): 49-55. |
ZHU R, TAN Y, LI C Q, et al. Research progress of advanced persulfate oxidation technology based on activation by transition metals[J]. Ind Miner Process, 2022, 51(1): 49-55. | |
11 | LI Y X, YANG Z X, WANG Y L, et al. A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants[J]. Nat Commun, 2017, 8(1): 1354. |
12 | LI M H, LIU Y B, LI F, et al. Defect-rich hierarchical porous UiO-66(Zr) for tunable phosphate removal[J]. Environ Sci Technol, 2021, 55(19): 13209-13218. |
13 | PEI L, ZHAO X D, LIU B S, et al. Rationally tailoring pore and surface properties of metal-organic frameworks for boosting adsorption of Dy3+[J]. ACS Appl Mater Interfaces, 2021, 13(39): 46763-46771. |
14 | LI H T, FU M, WANG S Q, et al. Stable Zr-based metal-organic framework nanoporous membrane for efficient desalination of hypersaline water[J]. Environ Sci Technol, 2021, 55(21): 14917-14927. |
15 | PU M J, YE D Q, WAN J Q, et al. Zinc-based metal-organic framework nanofibers membrane ZIF-65/PAN as efficient peroxymonosulfate activator to degrade aqueous ciprofloxacin[J].Sep Purif Technol, 2022, 299: 121716. |
16 | LI Y, WANG F, REN X Y. et al. Peroxymonosulfate activation for effective atrazine degradation over a 3D cobalt-MOF: performance and mechanism[J]. J Environ Chem Eng, 2023, 11(1): 109116. |
17 | YAO Y Y, WANG C H, YAN X, et al. Rational regulation of Co-N-C coordination for high-efficiency generation of 1O2 toward nearly 100% selective degradation of organic pollutants[J]. Environ Sci Technol, 2022, 56(12): 8833-8843. |
18 | HUANG D L, ZHANG G X, YI J, et al. Progress and challenges of metal-organic frameworks-based materials for SR-AOPs applications in water treatment[J]. Chemosphere, 2021, 263: 127672. |
19 | WANG L Y, LUO D, YANG J P, et al. Metal-organic frameworks-derived catalysts for contaminant degradation in persulfate-based advanced oxidation processes[J]. J Clean Prod, 2022, 375: 134118. |
20 | WANG C H, KIM J H, MALGRAS V, et al. Metal-organic frameworks and their derived materials: emerging catalysts for a sulfate radicals-based advanced oxidation process in water purification[J]. Small, 2019, 15(16): 1900744. |
21 | RIOU D, SEREE C, FEREY G, Composite microporous compounds (MIL-n): Ⅱ. hydrothermal synthesis and ab initio resolution by X-ray powder diffraction of MIL-5: a vanadodiphosphonate with a three-dimensional neutral framework[J]. J Solid State Chem, 1998, 141(1): 89-93. |
22 | JIANG J J, ZHANG F J, WANG Y R. Review of different series of MOF/g-C3N4 composites for photocatalytic hydrogen production and CO2 reduction[J]. New J Chem, 2023, 47: 1599-1609. |
23 | GU A T, WANG P, CHEN K W, et al. Core-shell bimetallic Fe-Co MOFs to activated peroxymonosulfate for efficient degradation of 2-chlorophenol[J]. Sep Purif Technol, 2022, 298: 121461. |
24 | ROY D, NEOGI S, DE S. Mechanistic investigation of photocatalytic degradation of Bisphenol-A using MIL-88A(Fe)/MoS2 Z-scheme heterojunction composite assisted peroxymonosulfate activation[J]. Chem Eng J, 2022, 428: 131028. |
25 | JING Y, JIA M Y, XU Z Y, et al. Facile synthesis of recyclable 3D gelatin aerogel decorated with MIL-88B(Fe) for activation peroxydisulfate degradation of norfloxacin[J]. J Hazard Mater, 2022, 424: 127503. |
26 | MIAO S C, ZHA Z X, LI Y, et al. Visible-light-driven MIL-53(Fe)/BiOCl composite assisted by persulfate: photocatalytic performance and mechanism[J]. J Photochem Photobiol A, 2019, 380: 111862. |
27 | ZHOU C, ZHU L, DENG L, et al. Efficient activation of peroxymonosulfate on CuS@MIL-101(Fe) spheres featured with abundant sulfur vacancies for coumarin degradation: performance and mechanisms[J]. Sep Purif Technol, 2021, 276: 119404. |
28 | XU W T, MA L, KE F, et al. Metal-organic frameworks MIL-88A hexagonal microrods as a new photocatalyst for efficient decolorization of methylene blue dye[J]. Dalt Trans, 2014, 43(9): 3792-3798. |
29 | YANG Q, MA Y, CHEN F. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water[J]. Chem Eng J, 2019, 378: 122149. |
30 | WANG C, LIU X, DEMIR N K, et al. Applications of water stable metal organic frameworks[J]. Chem Soc Rev, 2016, 45(18): 5107-5134. |
31 | YU J, CAO J, YANG Z H, et al. One-step synthesis of Mn-doped MIL-53(Fe) for synergistically enhanced generation of sulfate radicals towards tetracycline degradation[J]. J Colloid Interface Sci, 2020, 580: 470-479. |
32 | PU M J, GUAN Z Y, MA Y W, et al. Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of orange G in aqueous solution[J]. Appl Catal A, 2018, 549: 82-92. |
33 | BANERJEE R, PHAN A, WANG B C, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture[J]. Science, 2008, 319(5865): 939-943. |
34 | PARK K S, ZHENG N, ADRIEN PCÔTÉ, et al, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proc Natl Acad Sci, 2006, 103(27):10186-10191. |
35 | SAIUNKHE R R, YONG C, TANG J, et al. A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte[J]. Chem Commun, 2016, 52(26): 4764-4767. |
36 | LIU J, ZHAO Z, SHAO P, et al. Activation of peroxymonosulfate with magnetic Fe3O4-MnO2 core-shell nanocomposites for 4-chlorophenol degradation[J]. Chem Eng J, 2015, 262: 854-861. |
37 | LI X M, YAN X L, HU X Y, et al. Yolk-shell ZIFs@SiO2 and its derived carbon composite as robust catalyst for peroxymonosulfate activation[J]. J Environ Manage, 2020, 262: 110299. |
38 | WANG C, WANG H, LUO R, et al. Metal-organic framework one-dimensional fibers as efficient catalysts for activating peroxymonosulfate[J]. Chem Eng J, 2017, 330: 262-271. |
39 | CONG J, LEI F, ZHAO T, et al. Two Co-zeolite imidazolate frameworks with different topologies for degradation of organic dyes via peroxymonosulfate activation[J]. J Solid State Chem, 2017, 256: 10-13. |
40 | LI H X, WAN J, MA Y, et al. Degradation of refractory dibutyl phthalate by peroxymonosulfate activated with novel catalysts cobalt metal-organic frameworks: mechanism, performance, and stability[J]. J Hazard Mater, 2016, 318: 154-163. |
41 | CHUI S S Y, LO S M F, CHARMANT J P H, et al. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283(5405): 1148. |
42 | TIAN T, ZENG Z, VULPE D, et al. A sol-gel monolithic metal-organic framework with enhanced methane uptake[J]. Nat Mater, 2018, 17(2): 174-179. |
43 | ZHANG J Y, SU C L, XIE X J, et al. Enhanced visible light photocatalytic degradation of dyes in aqueous solution activated by HKUST-1: performance and mechanism[J]. RSC Adv, 2020, 10(61): 37028-37034. |
44 | ZHAO Y W, WANG J E, PEI R J. Micron-sized ultrathin metal-organic framework sheet[J]. J Am Chem Soc, 2020, 142: 10331-10336. |
45 | HOU S Y, ZHANG H Z, WANG P, et al. Multiwall carbon nanotube decorated hemin/Mn-MOF towards BPA degradation through PMS activation[J]. J Environ Chem Eng, 2022, 10(5): 108426. |
46 | LI H X, YANG Z X, LU S. Nano-porous bimetallic CuCo-MOF-74 with coordinatively unsaturated metal sites for peroxymonosulfate activation to eliminate organic pollutants: performance and mechanism[J]. Chemosphere, 2021, 273: 129643. |
47 | ZHENG H A, ZHOU Y, WANG D R, et al. Surface-functionalized PVDF membranes by facile synthetic Cu-MOF-74 for enhanced contaminant degradation and antifouling performance[J]. Colloids Surf A, 2022, 651: 129640. |
48 | WEN Q, LI D, LI H M, et al. Synergetic effect of photocatalysis and peroxymonosulfate activated by Co/Mn-MOF-74@ g-C3N4 Z-scheme photocatalyst for removal of tetracycline hydrochloride[J]. Sep Purif Technol, 2023, 313: 123518. |
49 | GONG Y, YANG B, ZHANG H, et al. A g-C3N4/MIL-101(Fe) heterostructure composite for highly efficient BPA degradation with persulfate under visible light irradiation[J]. J Mater Chem A, 2018, 6(46): 23703-23711. |
50 | WANG S, LIAO Y, FARHA O K, et al. Metal-organic framework nanoparticles[J]. Chem Mater, 2018, 30(37): 1800202. |
51 | JIAO L, SEOW J, SKINNER W S, et al. Metal-organic frameworks: structures and functional applications[J]. Mater Today, 2019, 27: 43-68. |
52 | SONG G, WANG Z, WANG L, et al. Preparation of MOF(Fe) and its catalytic activity for oxygen reduction reaction in an alkaline electrolyte[J]. Chin J Catal, 2014, 35(2): 185-195. |
53 | 张付昭, 许文莉, 李良军, 等. 一种新型阴离子型金属有机框架微孔材料的制备及其超声法快速合成研究[J]. 当代化工研究, 2022, 20: 55-57. |
ZHANG F Z, XU W L, LI L J, et al. Fabrication of anionic-pillared metal organic frameworks and the study of rapidsynthesis through ultrasonic method[J]. Mod Chem Res, 2022, 20: 55-57. | |
54 | YAO B, LUA S K, LIM H S, et al. Rapid ultrasound-assisted synthesis of controllable Zn/Co-based zeolitic imidazolate framework nanoparticles for heterogeneous catalysis[J]. Microporous Mesoporous Mater, 2020, 314: 110777. |
55 | XIONG Z K, JIANG Y N, WU Z L, et al. Synthesis strategies and emerging mechanisms of metal-organic frameworks for sulfate radical-based advanced oxidation process: a review[J]. Chem Eng J, 2021, 421(2): 127863. |
56 | TAO Z, ZHANG X, WANG S, et al. Spatial confinement of Co3O4 catalyst in hollow metal-organic framework as nanoreactor for improved degradation of organic pollutant[J]. Environ Sci Technol, 2015, 49(4): 2350-2357. |
57 | WANG D K, ZENG H, CHEN S Q, et al. Selective regulation of peroxydisulfate-to-hydroxyl radical for efficient in-situ chemical oxidation over Fe-based metal-organic frameworks under visible light[J]. J Catal, 2022, 406: 1-8. |
58 | DING S, WAN J Q, MA Y W, et al. Water stable SiO2-coated Fe-MOF-74 for aqueous dimethyl phthalate degradation in PS activated medium[J]. J Hazard Mater, 2021, 411: 125194. |
59 | CHEN X, OH W D, LIM T T. Graphene- and CNTs-based carbocatalysts in persulfates activation: material design and catalytic mechanisms[J]. Chem Eng J, 2018, 354: 941-976. |
60 | ANDREW LIN K Y, CHANG H A, HSU C J. Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of rhodamine B in water[J]. RSC Adv, 2015, 5: 32520-32530. |
61 | LI H C, SHAN C, PAN B C. Fe(Ⅲ)-doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species[J]. Environ Sci Technol, 2018, 52(4): 2197-2205. |
62 | ZHANG K, SUN D D, MA C, et al. Activation of peroxymonosulfate by CoFe2O4 loaded on metal-organic framework for the degradation of organic dye[J]. Chemosphere, 2020, 241: 125021. |
63 | 曾慧. 铁基金属有机框架(Fe-MOFs)光催化活化过硫酸盐及降解有机污染物的研究[D]. 南昌: 南昌航空大学, 2021. |
ZENG H. Study on photocatalytic activation of persulfate and degradation of organic pollutants by iron-based metal-organic framework (Fe-MOFs)[D]. Nanchang: Nanchang Hangkong University, 2021. | |
64 | WANG J M, WAN J Q, MA Y W, et al. Metal-organic frameworks MIL-88A with suitable synthesis conditions and optimal dosage for effective catalytic degradation of orange G through persulfate activation[J]. RSC Adv, 2016, 6(113): 112502-112511. |
65 | HASHEMZADEH B, ALAMGHOLILOO H, NOROOZI PESYAN N, et al. Degradation of ciprofloxacin using hematite/MOF nanocomposite as a heterogeneous fenton-like catalyst: a comparison of composite and core-shell structures[J]. Chemosphere, 2021, 281: 130970. |
66 | AHN Y Y, YUN E T, SEO J W, et al. Activation of peroxymonosulfate by surface-loaded noble metal nanoparticles for oxidative degradation of organic compounds[J]. Environ Sci Technol, 2016, 50(18): 10187-10197. |
67 | ZHANG N, FENG X B, RAO D W, et al. Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation[J]. Nat Commun, 2020, 11: 4066. |
68 | DU N J, LIU Y, LI Q J, et al. Peroxydisulfate activation by atomically-dispersed Fe-Nx on N-doped carbon: mechanism of singlet oxygen evolution for nonradical degradation of aqueous contaminants[J]. Chem Eng J, 2021, 413: 127545. |
69 | 何菁菁. MOFs衍生Fe-N共掺杂多孔碳活化过一硫酸盐降解有机污染物的性能与机理[D]. 杭州: 浙江大学, 2021. |
HE J J. Activation of peroxymonosulfate by MOFs derived Fe-N co-doped porous carbon for degradation of organic pollutants[D]. Hangzhou: Zhejiang University, 2021. | |
70 | 曲云鹏, 张丙兴, 石金彪, 等. 钛基金属-有机框架材料的改性及其催化性能研究[J]. 化工学报, 2020, 71(1): 283-289. |
QU Y P, ZHANG B X, SHI J B, et al. Study on modification of titanium-based metal-organic framework and catalytic performance[J]. CIESC J, 2020, 71(1): 283-289. | |
71 | LI H X, CHEN X, LI N, et al. Synthesis of bimetallic FeCu-MOF and its performance as catalyst of peroxymonosulfate for degradation of methylene blue[J]. Materials, 2022, 15: 7252. |
72 | 陈吉冲. 氨基修饰的金属有机框架材料NH2-MIL88B(Fe)活化过硫酸氢盐降解酸性橙Ⅱ[D]. 武汉: 武汉纺织大学, 2020. |
CHEN J C. Activation of peroxymonosulfate by amino-modified metal organic frameworks NH2-MIL88B(Fe) for the degradation of acid orange Ⅱ[D]. Wuhan: Wuhan Textile University, 2020. | |
73 | LIU C, WANG Y P, ZHANG Y T, et al. Enhancement of Fe@porous carbon to be an efficient mediator for peroxymonosulfate activation for oxidation of organic contaminants: incorporation NH2-group into structure of its MOF precursor[J]. Chem Eng J, 2018, 354: 835-848. |
74 | FLEMING M S, MANDAL T K, WALT D R. Nanosphere-microsphere assembly: methods for core-shell materials preparation[J]. Chem Mater, 2001, 13(6): 2210-2216. |
75 | LIU X R, LIU Y, QIN H H, et al. Selective removal of phenolic compounds by peroxydisulfate activation: inherent role of hydrophobicity and interface ROS[J]. Environ Sci Technol, 2022, 56(4): 2665-2676. |
76 | HU L X, DENG G H, LU W C, et al. Peroxymonosulfate activation by Mn3O4/metal-organic framework for degradation of refractory aqueous organic pollutant rhodamine B[J]. Chin J Catal, 2017, 38(8): 1360-1372. |
77 | KHOJASTEGI A, MOKHTARE A, MOSLEH I, et al. Catalytic activation of peroxymonosulfate using MnO2@quasi-MOF for singlet oxygen mediated degradation of organic pollutants in water[J]. Appl Catal A, 2022, 646: 118883. |
[1] | 元宁, 马洁, 张晋玲, 张建胜. 蒸气辅助合成PCN-6(M)双金属有机框架材料及其CH4和CO2吸附性能[J]. 应用化学, 2023, 40(6): 896-903. |
[2] | 修海祥, 刘万强, 尹东明, 程勇, 王春丽, 王立民. AB2型Laves相储氢合金研究进展[J]. 应用化学, 2023, 40(5): 640-652. |
[3] | 雷学博, 刘慧景, 丁赫宇, 申国栋, 孙润军. 用于降解印染废水中有机污染物的光催化剂的研究进展[J]. 应用化学, 2023, 40(5): 681-696. |
[4] | 师文君, 孙中辉, 宋忠乾, 许佳楠, 韩冬雪, 牛利. 钠离子电池层状过渡金属氧化物正极材料研究进展[J]. 应用化学, 2023, 40(4): 583-596. |
[5] | 王华宇, 张超, 陈柯铭, 葛明. 金属-有机框架MIL-88A(Fe)及其复合材料在水处理中的研究进展[J]. 应用化学, 2023, 40(2): 155-168. |
[6] | 林锦, 王芳珠, 吕灵灵. 工业原料制备大孔拟薄水铝石及在异佛尔酮选择性加氢中的应用[J]. 应用化学, 2023, 40(1): 79-90. |
[7] | 张丹, 尚润梅, 赵振涛, 李君华, 邢锦娟. V/Ce-Al2O3催化甲醇选择性氧化制备二甲氧基甲烷[J]. 应用化学, 2022, 39(9): 1429-1436. |
[8] | 陈炳刚, 刘三荣, 蒋子江, 于喜飞. 水性聚硅氧烷和聚乙烯醇复合物制备及其作为皮肤屏障材料的性能[J]. 应用化学, 2022, 39(8): 1224-1236. |
[9] | 邵姗, 张剑, 邓凯强, 杨杰, 杨绍明. 镍钴双金属-卟啉有机框架复合纳米材料构建的无酶传感器检测多巴胺[J]. 应用化学, 2022, 39(7): 1098-1107. |
[10] | 马轶莲, 胡浩东, 丁营利, 陈相见, 崔亮, 张坤玉. 羟基功能化离聚物与含环氧基团增容剂协同改性聚乳酸[J]. 应用化学, 2022, 39(12): 1870-1879. |
[11] | 黄小梅, 邓祥, 邢浪漫, 陈伟, 孙莉, 朱晓玉. Cu(Ⅱ)Co(Ⅱ)双金属碳纳米片用于无酶葡萄糖传感器[J]. 应用化学, 2022, 39(12): 1891-1902. |
[12] | 章朱迎, 杜德焰, 周家华, 施冬健, 陈明清. 贻贝启发功能改性的明胶基海绵止血材料的制备与性能[J]. 应用化学, 2022, 39(02): 247-257. |
[13] | 钮占宁, 唐好庆, 郑超, 田甜, 郑立允. 密度泛函理论研究烷基乙醇仲胺溴离子液体表面改性四氧化三铁[J]. 应用化学, 2021, 38(7): 825-835. |
[14] | 赵云萧, 王光鑫, 陈友绪, 赵桂艳. 聚合物/淀粉复合材料的制备与性能研究进展[J]. 应用化学, 2021, 38(11): 1432-1440. |
[15] | 崔媛, 周靓, 赫春香. 亚铈试纸的设计与制作[J]. 应用化学, 2020, 37(9): 1087-1092. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||