应用化学 ›› 2023, Vol. 40 ›› Issue (1): 69-78.DOI: 10.19894/j.issn.1000-0518.220088
收稿日期:
2022-03-22
接受日期:
2022-08-03
出版日期:
2023-01-01
发布日期:
2023-01-28
通讯作者:
李红周
基金资助:
Yuan LIN, Jia-Lian CHEN, Hong-Zhou LI()
Received:
2022-03-22
Accepted:
2022-08-03
Published:
2023-01-01
Online:
2023-01-28
Contact:
Hong-Zhou LI
About author:
lihongzhou@fjnu.edu.cnSupported by:
摘要:
采用模压成型的方法制备了单宁酸/聚乙烯醇(TA-PVA)共混物,并研究了不同TA/PVA配比对TA-PVA共混物的阻燃性能的影响。通过锥形量热仪、热重分析仪(TGA)、差示扫描量热仪(DSC)、垂直燃烧(UL-94)测试仪和极限氧指数(LOI)测试仪等对制备的TA-PVA共混物的阻燃性能进行了测试。结果表明,TA的加入能提高PVA的阻燃性能。TA和PVA能够通过分子间氢键形成稳定的TA-PVA共混物。当TA-PVA共混物中TA含量增加,所制备得到的TA-PVA共混物的热稳定性增加,玻璃化转变温度提高。当n(TA)∶n(PVA)=1∶50时,TA-PVA共混物的LOI值达到31.6%,UL-94等级为V-1级,热释放速率峰值从634.9 kW/m2降至328.1 kW/m2,烟气产生速率从0.18 m2/s降至0.10 m2/s。
林渊, 陈嘉炼, 李红周. 单宁酸/聚乙烯醇的阻燃性能[J]. 应用化学, 2023, 40(1): 69-78.
Yuan LIN, Jia-Lian CHEN, Hong-Zhou LI. Flame Retardant Properties of Tannic Acid/Poly(Vinyl Alcohol)[J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 69-78.
Judgment | UL-94 level | ||
---|---|---|---|
V-0 | V-1 | V-2 | |
Residual flame time of single sample(t1 and t2) | ≤10 s | ≤30 s | ≤30 s |
The total residual flame time of a set of specimens regulated in any state(tf) | ≤50 s | ≤250 s | ≤250 s |
Residual flame plus Afterglow time of a single sample after the second flame application(t2+t3) | ≤30 s | ≤60 s | ≤60 s |
Whether residual flame and/or afterglow spread to fixture | No | No | No |
Whether flame particles or droplets ignite cotton pads | No | No | Yes |
表1 垂直燃烧级别
Table 1 The level of vertical combustion
Judgment | UL-94 level | ||
---|---|---|---|
V-0 | V-1 | V-2 | |
Residual flame time of single sample(t1 and t2) | ≤10 s | ≤30 s | ≤30 s |
The total residual flame time of a set of specimens regulated in any state(tf) | ≤50 s | ≤250 s | ≤250 s |
Residual flame plus Afterglow time of a single sample after the second flame application(t2+t3) | ≤30 s | ≤60 s | ≤60 s |
Whether residual flame and/or afterglow spread to fixture | No | No | No |
Whether flame particles or droplets ignite cotton pads | No | No | Yes |
Sample | n(TA)∶n(PVA) (Feed) | SA | SB | n(TA)∶n(PVA)(measured) |
---|---|---|---|---|
TA-PVA-1 | 1∶92 | 1.00 | 5.50 | 1∶55 |
TA-PVA-2 | 1∶46 | 1.00 | 5.33 | 1∶53 |
TA-PVA-3 | 1∶23 | 1.00 | 5.14 | 1∶51 |
TA-PVA-4 | 1∶11.5 | 1.00 | 5.03 | 1∶50 |
表2 TA-PVA配比
Table 2 Formula of the TA-PVA blends
Sample | n(TA)∶n(PVA) (Feed) | SA | SB | n(TA)∶n(PVA)(measured) |
---|---|---|---|---|
TA-PVA-1 | 1∶92 | 1.00 | 5.50 | 1∶55 |
TA-PVA-2 | 1∶46 | 1.00 | 5.33 | 1∶53 |
TA-PVA-3 | 1∶23 | 1.00 | 5.14 | 1∶51 |
TA-PVA-4 | 1∶11.5 | 1.00 | 5.03 | 1∶50 |
Sample | Maximum thermal mass loss temperature/℃ | w(char residue)/% at 600 ℃ |
---|---|---|
PVA | 345.0 | 5.7 |
TA-PVA-1 | 334.9 | 17.9 |
TA-PVA-2 | 315.8 | 22.1 |
TA-PVA-3 | 315.8 | 22.9 |
TA-PVA-4 | 304.2 | 25.8 |
表3 PVA和TA-PVA的热重数据表
Table 3 Thermogravimetric data of PVA and TA-PVA
Sample | Maximum thermal mass loss temperature/℃ | w(char residue)/% at 600 ℃ |
---|---|---|
PVA | 345.0 | 5.7 |
TA-PVA-1 | 334.9 | 17.9 |
TA-PVA-2 | 315.8 | 22.1 |
TA-PVA-3 | 315.8 | 22.9 |
TA-PVA-4 | 304.2 | 25.8 |
Sample | Tg/℃ | Tm/℃ | Tc/℃ |
---|---|---|---|
PVA | 68.8 | 168.9 | 116.7 |
TA-PVA-1 | 40.4 | 153.8 | - |
TA-PVA-2 | 40.5 | 130.2 | - |
TA-PVA-3 | 42.1 | 130.3 | - |
TA-PVA-4 | 45.9 | 136.3 | - |
表4 PVA和TA-PVA的DSC数据表
Table 4 DSC data of PVA and TA-PVA
Sample | Tg/℃ | Tm/℃ | Tc/℃ |
---|---|---|---|
PVA | 68.8 | 168.9 | 116.7 |
TA-PVA-1 | 40.4 | 153.8 | - |
TA-PVA-2 | 40.5 | 130.2 | - |
TA-PVA-3 | 42.1 | 130.3 | - |
TA-PVA-4 | 45.9 | 136.3 | - |
Sample | PVA | TA-PVA-1 | TA-PVA-2 | TA-PVA-3 | TA-PVA-4 |
---|---|---|---|---|---|
UL-94 Rank | No rating | No rating | No rating | No rating | V-1 |
UL-94 Dripping | Yes | No | No | No | No |
LOI/% | 19 | 24.8 | 31.2 | 31.4 | 31.6 |
表5 PVA和TA-PVA的LOI和UL-94数据表
Table 5 LOI and UL-94 data of PVA and TA-PVA
Sample | PVA | TA-PVA-1 | TA-PVA-2 | TA-PVA-3 | TA-PVA-4 |
---|---|---|---|---|---|
UL-94 Rank | No rating | No rating | No rating | No rating | V-1 |
UL-94 Dripping | Yes | No | No | No | No |
LOI/% | 19 | 24.8 | 31.2 | 31.4 | 31.6 |
图6 PVA和TA-PVA的锥形量热测试(A) 热释放速率、 (B) 总热释放量、 (C) 烟气产生速率和(D) 质量残余
Fig.6 Cone calorimeter tests of PVA and TA-PVA (A) HRR, (B) THR, (C) SPR and (D) mass retention
Sample | TTI/s | Peak-HRR/(kW·m-2) | THR/(MJ·m-2) | SPR/(m2·s-1) | MLR/(g·s-1) | Mass retention/% |
---|---|---|---|---|---|---|
PVA | 61 | 634.9 | 58.5 | 0.18 | 0.30 | 0.3 |
TA-PVA-1 | 59 | 600.2 | 40.5 | 0.15 | 0.33 | 1.3 |
TA-PVA-2 | 94 | 488.2 | 40.2 | 0.16 | 0.32 | 0.3 |
TA-PVA-3 | 96 | 424.1 | 42.5 | 0.11 | 0.27 | 3.7 |
TA-PVA-4 | 117 | 328.1 | 43.8 | 0.10 | 0.22 | 5.0 |
表6 PVA和TA-PVA的锥量数据
Table 6 Cone test data of PVA and TA-PVA
Sample | TTI/s | Peak-HRR/(kW·m-2) | THR/(MJ·m-2) | SPR/(m2·s-1) | MLR/(g·s-1) | Mass retention/% |
---|---|---|---|---|---|---|
PVA | 61 | 634.9 | 58.5 | 0.18 | 0.30 | 0.3 |
TA-PVA-1 | 59 | 600.2 | 40.5 | 0.15 | 0.33 | 1.3 |
TA-PVA-2 | 94 | 488.2 | 40.2 | 0.16 | 0.32 | 0.3 |
TA-PVA-3 | 96 | 424.1 | 42.5 | 0.11 | 0.27 | 3.7 |
TA-PVA-4 | 117 | 328.1 | 43.8 | 0.10 | 0.22 | 5.0 |
1 | MOHSIN M, AHMAD S W, KHATRI A, et al. Performance enhancement of fire retardant finish with environment friendly bio cross-linker for cotton[J]. J Cleaner Prod, 2013,51∶ 191-195. |
2 | KIEKENS P, VAN DER BURGHT E, KNY E, et al. Functional textiles-from research and development to innovations and industrial uptake[J].Autex Res J, 2014, 14∶219-225. |
3 | XIA Z Y, KIRATITANAVIT W, FACENDOLA P, et al. A bio-derived char forming flame retardant additive for nylon 6 based on crosslinked tannic acid[J]. Thermochim Acta, 2020,693∶ 178750. |
4 | KORRY M, JOHNSON A, WEBB W, et al. Tannic acid-based prepolymer systems for enhanced intumescence in epoxy thermosets[J]. Green Mater, 2020, 8∶ 150-161. |
5 | COSTES L, LAOUTID F, BROHEZ S, et al. Bio-based flame retardants∶ when nature meets fire protection[J]. Mater Sci Eng R, 2017, 117∶ 1-25. |
6 | ZHANG W, YANG Z Y, TANG R C, et al. Application of tannic acid and ferrous ion complex as eco-friendly flame retardant and antibacterial agents for silk[J]. J Cleaner Prod,2020,250∶ 119545. |
7 | XU L Q, NEOH K G, KANG E T. Natural polyphenols as versatile platforms for material engineering and surface functionalization[J]. Prog Polym Sci, 2018, 87∶165-196. |
8 | JIN X B, XIANG E L, ZHANG R, et al. Halloysite nanotubes immobilized by chitosan/tannic acid complex as a green flame retardant for bamboo fiber/poly(lactic acid) composites[J].J Appl Polym Sci,2020, 138∶ 49621. |
9 | ZHAN K, KIM C, SUNG K, et al. Tunicate-inspired gallol polymers for underwater adhesive∶ a comparative study of catechol and gallol[J]. Biomacromolecules, 2017, 18∶ 2959-2966. |
10 | GUO L, YANG Z Y, TANG R C, et al. Grape seed proanthocyanidins∶ novel coloring, flame-retardant, and antibacterial agents for silk[J]. ACS Sustainable Chem Eng, 2020, 8∶ 5966-5974. |
11 | SILEIKA T S, BARRETT D G, ZHANG R, et al. Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine[J]. Angew Chem Int Ed, 2013, 52∶ 10766-10770. |
12 | GROSS R A, KALRA B. Biodegradable polymers for the environment[J]. Science, 2002, 297(5582)∶ 803-807. |
13 | HONG K H. Preparation and properties of polyvinyl alcohol/tannic acid composite film for topical treatment application[J]. Fiber Polym, 2016, 17∶ 1963-1968. |
14 | EJIMA H, RICHARDSON J J, LIANG K, et al. One-step assembly of coordination complexes for versatile film and particle engineering[J]. Science, 2013, 341∶ 154-157. |
15 | LEE D, HWANG H, KIM J S, et al. Vata∶ poly(vinyl alcohol)- and tannic acid-based nontoxic underwater adhesive[J].ACS Appl Mater Interfaces, 2020, 12∶ 20933-20941. |
16 | NIU W W, ZHU Y L, WANG R, et al. Remalleable, healable, and highly sustainable supramolecular polymeric materials combining superhigh strength and ultrahigh toughness[J]. ACS Appl Mater Interfaces, 2020, 12∶ 30805-30841. |
17 | BASAK S, RAJA A S M, SAXENA S, et al. Tannin based polyphenolic bio-macromolecules∶ creating a new era towards sustainable flame retardancy of polymers[J]. Polym Degrad Stab, 2021, 189∶ 109603. |
18 | KIM Y O, CHO J, KIM Y N, et al. Recyclable, flame-retardant and smoke-suppressing tannic acid-based carbon-fiber-reinforced plastic[J]. Composites Part B, 2020, 197∶ 108173. |
19 | KULKARNI S, XIA Z Y, YU S, et al. Bio-based flame-retardant coatings based on the synergistic combination of tannic acid and phytic acid for nylon-cotton blends[J]. ACS Appl Mater Interfaces, 2021, 13∶ 61620-61628. |
20 | CHEN X Y, LI J X, XI X D, et al. Condensed tannin-glucose-based NIPU bio-foams of improved fire retardancy[J]. Polym Degrad Stab, 2020, 175∶ 109121. |
21 | LI L, LIU X L, SHAO X M, et al. Synergistic effects of a highly effective intumescent flame retardant based on tannic acid functionalized graphene on the flame retardancy and smoke suppression properties of natural rubber[J]. Composites Part A, 2020, 129∶ 105715. |
22 | LI Y, QU Z C, WU K, et al. A bio-derived char-forming strategy for surface fireproofing∶ functionalization of UV-curing flame-retardant coating with vinyl-modified tannic acid[J]. Eur Polym J, 2021, 148∶ 110358. |
[1] | 颜丽娟, 高添贺, 施冬健, 陈明清. 丁香酚/改性聚乙烯醇抗菌复合膜的制备与性能[J]. 应用化学, 2023, 40(4): 527-535. |
[2] | 陈炳刚, 刘三荣, 蒋子江, 于喜飞. 水性聚硅氧烷和聚乙烯醇复合物制备及其作为皮肤屏障材料的性能[J]. 应用化学, 2022, 39(8): 1224-1236. |
[3] | 张守村, 皮茂. 单体对聚乙烯醇乳化行为的影响及大孔材料的制备[J]. 应用化学, 2021, 38(1): 77-83. |
[4] | 黄刚, 张宏伟, 张欢欢, 石彤非, 许东华. 氧化石墨烯对聚乙烯醇/硼酸水凝胶流变性能的影响[J]. 应用化学, 2018, 35(7): 767-775. |
[5] | 王东升,闻新,李云辉,唐涛. 纳米二氧化硅表面接枝9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物以及对聚甲基丙烯酸甲酯复合材料阻燃性能和透明性的影响[J]. 应用化学, 2018, 35(12): 1427-1433. |
[6] | 孙琪, 王丽秋, 刘洋, 郭晨晓, 王鹏君, 刘学龙, 张晓博, 郑立辉, 刘丽萍. 近红外聚乙烯醇荧光高分子材料的制备及性能[J]. 应用化学, 2018, 35(1): 53-59. |
[7] | 关晓琳, 贾天明, 秦雨欣, 张东海, 张扬, 范红婷, 魏强兵, 来守军. 低温水相合成巯基化聚乙烯醇/CdS量子点纳米复合物及用于测定环境水样中痕量Cu2+[J]. 应用化学, 2017, 34(3): 291-299. |
[8] | 张丽丽, 丁慧敏, 张继堂, 许东华, 李志锋. 碳纳米管改性环氧树脂的导热和阻燃性能[J]. 应用化学, 2017, 34(1): 46-53. |
[9] | 刘艳, 俞丹, 李维亚, 高翠翠, 王炜. 壳聚糖/聚乙烯醇共混膜在织物化学镀中的应用[J]. 应用化学, 2015, 32(2): 200-206. |
[10] | 邓新旺, 胡惠媛, 罗仲宽, 吴茂盛, 周莉. 肝素钠/聚乙烯醇复合水凝胶的制备与性能[J]. 应用化学, 2015, 32(12): 1358-1363. |
[11] | 范志恒, 周莉, 欧阳君君, 罗仲宽, 李妙妙. 化学-物理法制备聚乙烯醇/壳聚糖/纳米羟基磷灰石复合水凝胶及其性能[J]. 应用化学, 2014, 31(01): 61-64. |
[12] | 欧阳君君, 周莉. 多孔β-磷酸三钙/壳聚糖/聚乙烯醇复合水凝胶的制备与性能[J]. 应用化学, 2012, 29(09): 995-999. |
[13] | 赫玉欣, 张玉清. 热塑性淀粉/聚乙烯醇/蒙脱土三元纳米复合材料[J]. 应用化学, 2011, 28(07): 764-769. |
[14] | 赵水侠, 王来来. 有机硅氧烷预聚体的合成及其在化学固沙中的应用[J]. 应用化学, 2011, 28(07): 753-758. |
[15] | 黄琼瑜,张明霞,刘芳,肖秀峰,刘榕芳. 壳聚糖/聚乙烯醇/三聚磷酸钠三元复合微球的制备及表征[J]. 应用化学, 2010, 27(01): 21-26. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||