应用化学 ›› 2023, Vol. 40 ›› Issue (1): 79-90.DOI: 10.19894/j.issn.1000-0518.220089
收稿日期:
2022-03-23
接受日期:
2022-09-15
出版日期:
2023-01-01
发布日期:
2023-01-28
通讯作者:
王芳珠,吕灵灵
Jin LIN, Fang-Zhu WANG(), Ling-Ling LYU()
Received:
2022-03-23
Accepted:
2022-09-15
Published:
2023-01-01
Online:
2023-01-28
Contact:
Fang-Zhu WANG,Ling-Ling LYU
About author:
zkde2l@126.com摘要:
以废催化裂化催化剂处理生产的工业级硫酸铝与偏铝酸钠为原料制备拟薄水铝石,探究制备工艺、扩孔和改性等对拟薄水铝石晶型、孔结构、表面酸性以及形貌的影响。用自制的拟薄水铝石经过挤条、焙烧等过程制备相应的催化剂载体,负载Pd活性组分,研究改性Al2O3载体以及PdCl2和Pd(acac)2前驱体制备的Pd/Al2O3催化剂对异佛尔酮CC选择性加氢反应的活性与选择性。通过优化反应条件得到了比表面积为413 m2/g,孔容为0.84 cm3/g,孔径为6.84 nm的拟薄水铝石。加入扩孔剂碳酸铵和硅酸钠后,拟薄水铝石的孔容分别增大至0.98和1.53 cm3/g,平均孔径分别增至7.70和12.34 nm。以碳酸铵扩孔得到的Al2O3为载体和以PdCl2为前驱体制备得到的Pd/Al2O3催化剂对异佛尔酮CC选择性加氢活性高,达到98.69%,3,3,5-三甲基环己酮选择性>99%,活性稳定性高。
中图分类号:
林锦, 王芳珠, 吕灵灵. 工业原料制备大孔拟薄水铝石及在异佛尔酮选择性加氢中的应用[J]. 应用化学, 2023, 40(1): 79-90.
Jin LIN, Fang-Zhu WANG, Ling-Ling LYU. Preparation of Pseudo-boehamite from Industrial Materials and Its Application in Selective Hydrogenation of Isophorone[J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 79-90.
图1 不同成胶pH值(A)、成胶温度(B)、老化pH值(C)和老化温度(D)下样品的XRD谱图
Fig.1 XRD patterns of samples under different gelling pH (A), gelling temperature (B), aging pH (C) and aging temperature(D)
Gelling temperature/℃ | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
40 | 135 | 0.15 | 4.69 |
50 | 355 | 0.73 | 6.33 |
60 | 376 | 0.80 | 6.92 |
70 | 350 | 0.69 | 5.91 |
90 | 290 | 0.53 | 5.65 |
表1 成胶温度对拟薄水铝石孔结构的影响
Table 1 Effect of gelling temperature on pore structure parameters of pseudo-boehmites
Gelling temperature/℃ | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
40 | 135 | 0.15 | 4.69 |
50 | 355 | 0.73 | 6.33 |
60 | 376 | 0.80 | 6.92 |
70 | 350 | 0.69 | 5.91 |
90 | 290 | 0.53 | 5.65 |
Gelling pH | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
7~8 | 173 | 0.29 | 5.60 |
8~9 | 188 | 0.40 | 5.44 |
9~10 | 412 | 0.73 | 5.10 |
10~11 | 413 | 0.81 | 6.84 |
11~12 | 417 | 0.77 | 5.98 |
表2 成胶pH值对拟薄水铝石孔结构的影响
Table 2 Effect of gelling pH on pore structure parameters of pseudo-boehmites
Gelling pH | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
7~8 | 173 | 0.29 | 5.60 |
8~9 | 188 | 0.40 | 5.44 |
9~10 | 412 | 0.73 | 5.10 |
10~11 | 413 | 0.81 | 6.84 |
11~12 | 417 | 0.77 | 5.98 |
Aging temperature/℃ | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
50 | 368 | 0.65 | 4.39 |
70 | 378 | 0.71 | 4.98 |
90 | 367 | 0.78 | 5.61 |
表3 老化温度对拟薄水铝石孔结构的影响
Table 3 Effect of aging temperature on pore structure parameters of pseudo-boehmites
Aging temperature/℃ | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
50 | 368 | 0.65 | 4.39 |
70 | 378 | 0.71 | 4.98 |
90 | 367 | 0.78 | 5.61 |
Aging pH | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
9.0 | 327 | 0.74 | 5.73 |
9.5 | 341 | 0.73 | 5.53 |
10.0 | 415 | 0.69 | 5.42 |
10.5 | 413 | 0.69 | 5.40 |
11.0 | 431 | 0.68 | 5.42 |
表4 老化pH值对拟薄水铝石孔结构的影响
Table 4 Effect of aging pH on pore structure parameters of pseudo-boehmites
Aging pH | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
9.0 | 327 | 0.74 | 5.73 |
9.5 | 341 | 0.73 | 5.53 |
10.0 | 415 | 0.69 | 5.42 |
10.5 | 413 | 0.69 | 5.40 |
11.0 | 431 | 0.68 | 5.42 |
Aluminium sulfate concentration/(g·L-1) | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
104 | 406 | 0.73 | 5.98 |
156 | 435 | 0.81 | 5.88 |
208 | 443 | 0.73 | 5.43 |
260 | 441 | 0.69 | 5.20 |
312 | 447 | 0.63 | 4.87 |
表5 硫酸铝浓度对拟薄水铝石孔结构的影响
Table 5 Effect of the aluminium sulfate concentration on pore structure parameters of pseudo-boehmites
Aluminium sulfate concentration/(g·L-1) | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
104 | 406 | 0.73 | 5.98 |
156 | 435 | 0.81 | 5.88 |
208 | 443 | 0.73 | 5.43 |
260 | 441 | 0.69 | 5.20 |
312 | 447 | 0.63 | 4.87 |
Aluminium sulfate dropping speed/(mL·min-1) | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
10 | 475 | 0.82 | 6.92 |
20 | 413 | 0.84 | 6.84 |
40 | 412 | 0.74 | 5.98 |
60 | 421 | 0.67 | 5.12 |
80 | 416 | 0.67 | 4.92 |
表6 硫酸铝滴加速度对拟薄水铝石孔结构的影响
Table 6 Effect of the aluminium sulfate dropping speed on pore structure parameters of pseudo-boehmites
Aluminium sulfate dropping speed/(mL·min-1) | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
10 | 475 | 0.82 | 6.92 |
20 | 413 | 0.84 | 6.84 |
40 | 412 | 0.74 | 5.98 |
60 | 421 | 0.67 | 5.12 |
80 | 416 | 0.67 | 4.92 |
m((NH4)2CO3)/m(Al2O3)(g·100 g-1) | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
0 | 386 | 0.72 | 5.61 |
2.5 | 404 | 0.84 | 6.42 |
5 | 429 | 0.98 | 7.70 |
7.5 | 417 | 0.87 | 6.90 |
10 | 405 | 0.84 | 6.84 |
表7 碳酸铵对拟薄水铝石孔结构的影响
Table 7 Effect of ammonium carbonate on pore structure parameters of pseudo-boehmites
m((NH4)2CO3)/m(Al2O3)(g·100 g-1) | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
0 | 386 | 0.72 | 5.61 |
2.5 | 404 | 0.84 | 6.42 |
5 | 429 | 0.98 | 7.70 |
7.5 | 417 | 0.87 | 6.90 |
10 | 405 | 0.84 | 6.84 |
m(SiO2)/m(Al2O3)(g·100 g-1) | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
0 | 404 | 0.72 | 5.61 |
2 | 457 | 1.07 | 9.36 |
4 | 472 | 1.17 | 9.88 |
6 | 488 | 1.31 | 10.75 |
8 | 467 | 1.53 | 12.34 |
10 | 446 | 1.43 | 12.88 |
12 | 445 | 1.28 | 11.39 |
16 | 467 | 1.27 | 10.93 |
20 | 439 | 1.21 | 10.97 |
25 | 300 | 1.03 | 13.81 |
表8 硅酸钠对拟薄水铝石孔结构的影响
Table 8 Effect of sodium silicate on pore structure parameters of pseudo-boehmites
m(SiO2)/m(Al2O3)(g·100 g-1) | Specific surface area/(m2·g-1) | Pore volume/(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
0 | 404 | 0.72 | 5.61 |
2 | 457 | 1.07 | 9.36 |
4 | 472 | 1.17 | 9.88 |
6 | 488 | 1.31 | 10.75 |
8 | 467 | 1.53 | 12.34 |
10 | 446 | 1.43 | 12.88 |
12 | 445 | 1.28 | 11.39 |
16 | 467 | 1.27 | 10.93 |
20 | 439 | 1.21 | 10.97 |
25 | 300 | 1.03 | 13.81 |
m((NH4)2CO3)/m(Al2O3)(g·100 g-1) | |||
---|---|---|---|
0 | 0.713 | 0.407 | 0.283 |
2.5 | 0.770 | 0.447 | 0.310 |
5 | 0.819 | 0.457 | 0.321 |
7.5 | 0.752 | 0.417 | 0.315 |
10 | 0.699 | 0.397 | 0.284 |
表9 碳酸铵对拟薄水铝石衍生的γ-Al2O3表面酸性的影响
Table 9 Effect of ammonium carbonate on the surface acidity of γ-Al2O3 derived from pseudo-boehmites
m((NH4)2CO3)/m(Al2O3)(g·100 g-1) | |||
---|---|---|---|
0 | 0.713 | 0.407 | 0.283 |
2.5 | 0.770 | 0.447 | 0.310 |
5 | 0.819 | 0.457 | 0.321 |
7.5 | 0.752 | 0.417 | 0.315 |
10 | 0.699 | 0.397 | 0.284 |
m(SiO2)/m(Al2O3)(g·100 g-1) | |||
---|---|---|---|
2 | 0.708 | 0.456 | 0.231 |
4 | 0.723 | 0.463 | 0.239 |
6 | 0.772 | 0.500 | 0.251 |
8 | 0.712 | 0.435 | 0.259 |
10 | 0.692 | 0.457 | 0.215 |
12 | 0.567 | 0.395 | 0.165 |
14 | 0.507 | 0.427 | 0.080 |
16 | 0.411 | 0.328 | 0.078 |
20 | 0.385 | 0.348 | 0.040 |
25 | 0.332 | 0.286 | 0.040 |
表10 硅酸钠对拟薄水铝石衍生的γ-Al2O3表面酸性的影响
Table 10 Effect of sodium silicate on the surface acidity of γ-Al2O3 derived from pseudo-boehmites
m(SiO2)/m(Al2O3)(g·100 g-1) | |||
---|---|---|---|
2 | 0.708 | 0.456 | 0.231 |
4 | 0.723 | 0.463 | 0.239 |
6 | 0.772 | 0.500 | 0.251 |
8 | 0.712 | 0.435 | 0.259 |
10 | 0.692 | 0.457 | 0.215 |
12 | 0.567 | 0.395 | 0.165 |
14 | 0.507 | 0.427 | 0.080 |
16 | 0.411 | 0.328 | 0.078 |
20 | 0.385 | 0.348 | 0.040 |
25 | 0.332 | 0.286 | 0.040 |
图5 Pd/Al2O3催化剂(A)Cat-1、(B)Cat-2、(C)Cat-3和(D)Cat-4的HR-TEM图和Pd粒径分布
Fig.5 HR-TEM images and Pd particle size distribution of Pd/Al2O3 catalysts: (A) Cat-1, (B) Cat-2, (C) Cat-3, (D) Cat-4
Catalysts | Conversion of IP/% | Selectivity/% | |
---|---|---|---|
TMCH | TMOL | ||
Cat-0 | 99.86 | 99.55 | 0.45 |
Cat-1 | 98.69 | 99.03 | 0.97 |
Cat-2 | 90.67 | 100 | 0 |
Cat-3 | 83.80 | 100 | 0 |
Cat-4 | 45.28 | 100 | 0 |
表11 不同方法制备的Pd/Al2O3催化剂上异佛尔酮(IP)加氢反应的初活性及选择性
Table 11 Initial activity and selectivity of IP hydrogenation reaction on Pd/Al2O3 catalysts prepared by different methods
Catalysts | Conversion of IP/% | Selectivity/% | |
---|---|---|---|
TMCH | TMOL | ||
Cat-0 | 99.86 | 99.55 | 0.45 |
Cat-1 | 98.69 | 99.03 | 0.97 |
Cat-2 | 90.67 | 100 | 0 |
Cat-3 | 83.80 | 100 | 0 |
Cat-4 | 45.28 | 100 | 0 |
1 | FENG J, JIAN C, BING L, et al. Particle size effects in the selective hydrogenation of cinnamaldehyde over supported palladium catalysts[J]. RSC Adv, 2016, 6(79): 75541-75551. |
2 | PANPRANOT J, TANGJITWATTAKORN O, PRASERTHDAM P, et al. Effects of Pd precursors on the catalytic activity and deactivation of silica-supported Pd catalysts in liquid phase hydrogenation[J]. Appl Catal A: Gen, 2005, 292: 322-327. |
3 | SOHLBERG K, PANTELIDES S, PENNYCOOK S. Surface reconstruction and the difference in surface acidity between gamma- and eta-alumina[J]. J Am Chem Soc, 2001, 123(1): 26-26. |
4 | WANG J A, BOKHIMI X, NOVARO O, et al. Effects of structural defects and acid-basic properties on the activity and selectivity of isopropanol decomposition on nanocrystallite sol-gel alumina catalyst[J]. J Mol Catal, 1999, 137: 239-252. |
5 | QI C L, LIN C, WANG Z F, et al. Technique improvement of high-pure alumina production process with alkoxide hydrolysis method[J]. Contemp Chem Ind, 2013, 42(3): 346-348. |
6 | LI T, JIN H X, LIU H L. Preparation of high purity Al2O3 from sodium aluminate solution by carbon decomposition and pickling assisted with ultrasonic[J]. Nonferrous Met Extr Metall, 2018, 9: 35-39. |
7 | ARABKHANI P, JAVADIAN H, ASFARAM A, et al. Decorating graphene oxide with zeolitic imidazolate framework (ZIF-8) and pseudo-boehmite offers ultra-high adsorption capacity of diclofenac in hospital effluents[J]. Chemosphere, 2021, 271(7): 129610. |
8 | REN X J, LIU Y Z, MIAO L X. Continuous carbonation for synthesis of pseudo-boehmite by using cross-flow rotating packed bed through the reaction of NaAlO2 solution with CO2 gas[J]. Nanomaterials, 2020, 10(2): 263-275. |
9 | LIU W J, SUI B K, YUAN S H, et al. Preparation of pseudo-boehmite by aluminium sulfate method[J]. Pet Process Petrochem, 2016, 47(1): 27-31. |
10 | 王楚, 冯辉霞, 梁顺琴, 等. Al2(SO4)3-NH3·H2O法大孔拟薄水铝石的制备及其应用[J]. 工业催化, 2015, 23(7): 541-544. |
WANG C, FENG H X, LIANG S Q, et al. Preparation of macropore pseudo- poehmite by Al2(SO4)3-NH3·H2O process and its application[J]. Ind Catal, 2015, 23(7): 541-544. | |
11 | 高建峰, 徐春彦, 王建中, 等. 用偏铝酸钠直接制取高纯拟薄水铝石[J]. 催化学报, 2003, 24(7): 505-508. |
GAO J F, XU C Y, WANG J Z, et al. Direct preparation of high-purity pseudo-boehmite from sodium metaaluminate[J]. Chin J Catal, 2003, 24(7): 505-508. | |
12 | 汪忠清, 梁顺琴, 李斯琴. 大孔容拟薄水铝石的研制及工业应用[J]. 石油化工, 2001, 30(3): 220-223. |
WANG Z Q, LIANG S Q, LI S Q. Development of commercial application of large pore volume pseudo-boehmite[J]. Petrochem Technol, 2001, 30(3): 220-223. | |
13 | 夏继平, 李晓云, 李世鹏. 不同硅源改性拟薄水铝石的制备及表征[J]. 无机盐工业, 2017, 49(5): 75-77. |
XIA J P, LI X Y, LI S P. Preparation and characterization of pseudo-boehmite modified with different silicon sources[J]. Inorg Chem Ind, 2017, 49(5): 75-77. | |
14 | 杨扬. 硅改性氧化铝基质的合成与表征[D]. 青岛: 中国石油大学(华东), 2016. |
YANG Y. Synthesis and characterization of silicon modified alumina matrix[D]. Qingdao:China University of Petroleum, 2016. |
[1] | 修海祥, 刘万强, 尹东明, 程勇, 王春丽, 王立民. AB2型Laves相储氢合金研究进展[J]. 应用化学, 2023, 40(5): 640-652. |
[2] | 师文君, 孙中辉, 宋忠乾, 许佳楠, 韩冬雪, 牛利. 钠离子电池层状过渡金属氧化物正极材料研究进展[J]. 应用化学, 2023, 40(4): 583-596. |
[3] | 张丹, 尚润梅, 赵振涛, 李君华, 邢锦娟. V/Ce-Al2O3催化甲醇选择性氧化制备二甲氧基甲烷[J]. 应用化学, 2022, 39(9): 1429-1436. |
[4] | 王显, 杨小龙, 马荣鹏, 刘长鹏, 葛君杰, 邢巍. 单原子分散的Ir-N-C燃料电池阳极抗中毒催化剂[J]. 应用化学, 2022, 39(8): 1202-1208. |
[5] | 陈炳刚, 刘三荣, 蒋子江, 于喜飞. 水性聚硅氧烷和聚乙烯醇复合物制备及其作为皮肤屏障材料的性能[J]. 应用化学, 2022, 39(8): 1224-1236. |
[6] | 张梅伦, 凌红冉, 孙在春, 梅炳初, 李威威. 氟化镁钡粉体制备方法研究进展[J]. 应用化学, 2022, 39(6): 900-911. |
[7] | 马轶莲, 胡浩东, 丁营利, 陈相见, 崔亮, 张坤玉. 羟基功能化离聚物与含环氧基团增容剂协同改性聚乳酸[J]. 应用化学, 2022, 39(12): 1870-1879. |
[8] | 吴利军, 郭守杰, 张超, 李知声, 李唯聪, 杨长春. 锂钠合金的原位电化学制备及“锂+钠”共储特性[J]. 应用化学, 2022, 39(11): 1757-1765. |
[9] | 章朱迎, 杜德焰, 周家华, 施冬健, 陈明清. 贻贝启发功能改性的明胶基海绵止血材料的制备与性能[J]. 应用化学, 2022, 39(02): 247-257. |
[10] | 钮占宁, 唐好庆, 郑超, 田甜, 郑立允. 密度泛函理论研究烷基乙醇仲胺溴离子液体表面改性四氧化三铁[J]. 应用化学, 2021, 38(7): 825-835. |
[11] | 高峰, 徐子迪, 管纯倩, 王研, 臧云浩, 顾建峰, 曲江英. 硫/石墨烯气凝胶的绿色可控制备及锂硫电池性能[J]. 应用化学, 2021, 38(4): 439-446. |
[12] | 徐峰, 张坤, 阴凤琴, 徐斐, 庞雨萱, 陈诗婷. 阴离子印迹聚合物的制备及其应用研究进展[J]. 应用化学, 2021, 38(2): 123-135. |
[13] | 赵云萧, 王光鑫, 陈友绪, 赵桂艳. 聚合物/淀粉复合材料的制备与性能研究进展[J]. 应用化学, 2021, 38(11): 1432-1440. |
[14] | 李琳, 钱四化, 吕天琦, 王宇辉, 郑建萍. 新一代测序技术的文库制备方法研究进展[J]. 应用化学, 2021, 38(1): 11-23. |
[15] | 崔媛, 周靓, 赫春香. 亚铈试纸的设计与制作[J]. 应用化学, 2020, 37(9): 1087-1092. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||