应用化学 ›› 2022, Vol. 39 ›› Issue (6): 980-989.DOI: 10.19894/j.issn.1000-0518.210263
收稿日期:
2021-05-31
接受日期:
2021-09-27
出版日期:
2022-06-01
发布日期:
2022-06-27
通讯作者:
齐海燕
基金资助:
Hai-Yan QI1(), Chen-Qi ZHANG1, Jin-Long LI2, Jun LI3
Received:
2021-05-31
Accepted:
2021-09-27
Published:
2022-06-01
Online:
2022-06-27
Contact:
Hai-Yan QI
About author:
E⁃mail:qhy120@sina.comSupported by:
摘要:
以柠檬酸为碳源,通过水热合成制备N、S掺杂的蓝色荧光碳点(NS-CDs),用于实际样品中铜离子检测。采用高分辨率透射电子显微镜、X射线衍射光谱、红外吸收光谱、X射线光电子能谱、荧光光谱对其结构、组成和光学性质进行表征。结果表明,NS-CDs分散性好,尺寸分布在0.6~2.2 nm之间,具有无定形碳的结构;碳点表面含有羟基、羧基、酰胺等官能团,C、N、O和S元素质量分数别为54.01%、24.49%、19.39%及2.11%;该碳点具有良好的耐盐性、pH稳定性、光稳定性,其荧光量子产率为25%。基于Cu2+离子与碳点表面多个官能团发生相互作用形成聚集的网络结构,导致荧光猝灭的现象,建立了检测Cu2+的荧光分析新方法,本方法对Cu2+离子具有良好的选择性和较高的灵敏度,在0.2~10、10~50和50~100 μmol/L范围均有良好的线性响应,检出限为41 nmol/L(S/N=3)满足《土壤环境质量标准》对土壤中Cu2+检测国家标准的要求(6.25 mmol/L)。测定了实际土壤中Cu2+的含量,检测结果为2.55 μmol/L,加标回收率在104.9%~105.6%之间,实现了Cu2+的快速、灵敏、高选择性检测。
中图分类号:
齐海燕, 张琛琪, 李金龙, 李军. 氮硫掺杂碳点的制备及检测铜离子[J]. 应用化学, 2022, 39(6): 980-989.
Hai-Yan QI, Chen-Qi ZHANG, Jin-Long LI, Jun LI. Synthesis of Sulfur and Nitrogen Doped Carbon Dots for Cu(Ⅱ) Detection[J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 980-989.
图1 NS-CDs的高分辨透射电镜图(A)、粒径分布图(B)、红外谱图(C)及X射线电子衍射谱图(D)
Fig.1 High resolution transmission electron microscopy(A), diameter size distribution curve(B), infrared spectrum (C) and X-ray electron diffraction spectrum (D) of NS-CDs
图2 NS-CDs的X射线光电子能谱全扫描光谱(A); C1s(B)、O1s(C)、N1s(D)及S2p(E)扫描光谱
Fig.2 Survey scan XPS spectrum of NS-CDs (A); C1s (B), O1s (C), N1s (D) and S2p (E) scan spectra
图3 (A)NS-CDs的荧光激发谱图(a)、荧光发射谱图(b)和紫外吸收谱图(c),插图为NS-CDs在365 nm紫外灯下的照片; (B) NS-CDs的色坐标谱图; (C)NS-CDs的激发-发射矩阵
Fig.3 (A) Fluorescence emission (a), fluorescence excitation (b) and UV-Vis (c) spectra of NS-CDs. The illustration is the photo of NS-CDs under 365 nm ultraviolet; (B) The color coordinate spectrum of NS-CDs; (C) Excitation-emission matrix of NS-CDs
图4 (A)不同浓度NaCl对NS-CDs荧光强度的影响; (B)碳点在350 nm激发下428 nm处的荧光强度随pH值的变化; (C)在自然光照下碳点荧光强度与时间的关系
Fig.4 (A)Effect of different concentrations on the fluorescence intensity of NS-CDs; (B) The change of fluorescence intensity of NS-CDs at 428 nm excited by 350 nm with pH; (C) The relationship between NS-CDs fluorescence intensity and time under natural light
图6 (A)NS-CDs检测Cu2+示意图; (B)加入Cu2+的NS-CDs、NS-CDs以及单独c(Cu2+)=50 μmol/L溶液的紫外-可见光谱图; (C)NS-CDs对Cu2+荧光响应图
Fig.6 (A)Schematic illustration of detection of Cu2+ with NS-CDs; (B) UV-Vis spectra of NS-CDs upon addition of Cu2+ solutions, NS-CDs and separate Cu2+ solution; (C)Fluorescence response diagram of NS-CDs to Cu2+
图7 不同浓度Cu2+时NS-CDs荧光发射光谱图(A), c(Cu2+)=0、0.2、0.4、0.6、0.8、1、2、3、4、5、6、7、8、9、10、20、30、40、50、60、70、80、90和100 μmol/L (上至下); (B) NS-CDs荧光猝灭程度随Cu2+浓度变化曲线; (C,D,E) Cu2+浓度与NS-CDs荧光强度之间线性曲线(B、C、D、E中F和F0分别代表有和无Cu2+时NS-CDs荧光强度)
Fig.7 Changes of NS-CDs fluorescence emission spectra (A) with different concentrations of Cu2+=0, 0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 μmol/L (from top to bottom); (B) Change of fluorescence quenching degree of NS-CDs with different concentrations of Cu2+; (C,D,E) Linear curves of Cu2+ concentration and fluorescence intensity of gold clusters ( F and F0 stand for the fluorescence intensity of NS-CDs with and without Cu2+ in B, C, D and E, respectively)
材料 Materials | 线性范围 Linear range/(μmol·L-1) | 检出限 Detection limit/(nmol·L-1)) | 参考文献 Ref. |
---|---|---|---|
CMH?GA?CDs | 1~10 | 210 | [ |
CDs | 10~100 | 132 | [ |
NCDs | 0.4~200 | 125 | [ |
PQDs | 0~280 | 4 740 | [ |
CDs | 0~200 | 40 000 | [ |
ND?CQDs | 0.3~30 | 190 | [ |
NS?CDs | 0.2~100 | 41 | 本工作 This work |
表1 不同荧光检测法对Cu2+检测性能的比较
Table 1 Comparison of performance of different fluorescence methods for detection of Cu2+
材料 Materials | 线性范围 Linear range/(μmol·L-1) | 检出限 Detection limit/(nmol·L-1)) | 参考文献 Ref. |
---|---|---|---|
CMH?GA?CDs | 1~10 | 210 | [ |
CDs | 10~100 | 132 | [ |
NCDs | 0.4~200 | 125 | [ |
PQDs | 0~280 | 4 740 | [ |
CDs | 0~200 | 40 000 | [ |
ND?CQDs | 0.3~30 | 190 | [ |
NS?CDs | 0.2~100 | 41 | 本工作 This work |
序号 No. | 初始值 Found/(μmol·L-1) | 加入值 Added/(μmol·L-1) | 测定值 Total found/(μmol·L-1) | 回收率 Recovery/% | 相对标准偏差 RSD(%, n=3) |
---|---|---|---|---|---|
1 | 2.55 | 5.00 | 7.80 | 105.0 | 2.3 |
2 3 | 2.55 | 10.00 80.00 | 13.11 | 105.6 | 0.4 |
2.55 | 86.45 | 104.9 | 1.7 |
表2 实际样品中 Cu2+的测定结果
Table 2 Determination results of Cu2+ in real samples
序号 No. | 初始值 Found/(μmol·L-1) | 加入值 Added/(μmol·L-1) | 测定值 Total found/(μmol·L-1) | 回收率 Recovery/% | 相对标准偏差 RSD(%, n=3) |
---|---|---|---|---|---|
1 | 2.55 | 5.00 | 7.80 | 105.0 | 2.3 |
2 3 | 2.55 | 10.00 80.00 | 13.11 | 105.6 | 0.4 |
2.55 | 86.45 | 104.9 | 1.7 |
1 | QIAN B, VÁRADI L, TRINCHI A, et al. The design and synthesis of fluorescent coumarin derivatives and their study for Cu2+ sensing with an application for aqueous soil extracts[J]. Molecules, 2019, 24(19): 3569. |
2 | MIAO X M, LING L S, CHENG D, et al. A highly sensitive sensor for Cu2+ with unmodified gold nanoparticles and DNA zyme by using the dynamic light scattering technique[J]. Analyst, 2012, 137(13): 3064-3069. |
3 | 安春, 杜佩瑶, 张振, 等. 基于谷胱甘肽修饰的金纳米簇选择性检测铜离子[J]. 分析化学. 2020, 48(3): 355-362. |
AN C, DU P Y, ZHANG Z, et al. Rapid and highly selective detection of copper ion with glutathione-capped gold nanoclusters[J]. Chinese J Anal Chem, 2020, 48(3): 355-362. | |
4 | MANOJ K, NARESH K,VANDANA B. Ratiometric nanomolar detection of Cu2+ ions in mixed aqueous media: a Cu2+/Li+ ions switchable allosteric system based on thiacalix crown[J]. Dalton Trans, 2012, 41(34): 10189-10193. |
5 | 张嘉惠, 陈阳, 李静, 等. 基于表面增强拉曼光谱技术快速检测铜离子[J]. 分析化学, 2021, 49(3): 440-448. |
ZHANG J H, CHEN Y, LI J, et al. Rapid detection of copper ions of simulated Wilson's disease urine based on surface-enhanced Raman spectroscopy[J]. Chinese J Anal Chem, 2021, 49(3): 440-448. | |
6 | CHAIYO S, CHAILAPAKUL O, SAKAI T, et al. Highly sensitive determination of trace copper in food by adsorptive stripping voltammetry in the presence of 1,10-phenanthroline[J]. Talanta, 2013, 108(8): 1-6. |
7 | 李夏楚秦, 杨通, 王健, 等. 基于CdTe量子点-电纺纳米纤维组装体可视化、便携检测铜离子[J]. 分析化学, 2021, 49(2): 207-215. |
LI X C Q, YANG T, WANG J, et al. CdTe quantum dots-electrospun nanofibers assembly for visual and portable detection of Cu2+[J]. Chinese J Anal Chem, 2021, 49(2): 207-215. | |
8 | CINDY D, NAGAMALAI V, MARISA P, et al. Biocompatibility and bioimaging potential of fruit-based carbon dots[J]. Nanomaterials, 2019, 9(2): 199. |
9 | NEDA E, ZEINAB B, HAMIDE E, et al. Effect of carbonization degree of carbon dots on cytotoxicity and photo-induced toxicity to cells[J]. Heliyon, 2019, 5(12): e03038. |
10 | BINESH U, WU R S, WEI S C, et al. Fluorescent carbon dots for selective labeling of subcellular organelles[J]. ACS Omega, 2020, 5(20): 11248-11261. |
11 | YANG X X, CUI F C, REN R, et al. Red-emissive carbon dots for “Switch-On” dual function sensing platform rapid detection of ferric ions and L-cysteine in living cells[J]. ACS Omega, 2019, 4(7): 12575-12583. |
12 | WU J, WANG W J, WANG Z H. Porphin-based carbon dots for “Turn Off-On” phosphate sensing and cell imaging[J]. Nanomaterials, 2020, 12(2): 326. |
13 | ZHOU N, ZHANG X W, SHI Y P, et al. Nitrogen-doped carbon dots mediated fluorescent on-off assay for highly sensitive I- and Br- ions[J]. New J Chem, 2018, 42(17): 14332-14339. |
14 | STEFANIA L, MARTA A, ADALBERTO C, et al. Carbon nano-onions as fluorescent on/off modulated nanoprobes for diagnostics[J]. J Nanotechnol, 2017, 8: 1878-1888. |
15 | YANG R P, HU Y J, YANG S S, et al. Quantum-dot light-emitting diodes with nitrogen-doped carbon nanodot hole transport and electronic energy transfer layer[J]. Sci Rep, 2017, 7: 46422. |
16 | SUN X, LI H J, OU N Q, et al. Visible-light driven TiO2 photocatalyst coated with graphene quantum dots of tunable nitrogen doping[J]. Molecules, 2019, 24(2): 344. |
17 | YAN F Y, BAI Z J, CHEN Y, et al. Ratiometric fluorescent detection of copper ions using coumarin-functionalized carbon dots based on FRET[J]. Sens Actuator B, 2018, 275(1): 86-94. |
18 | PENG S S, JI H K, SANG J P. Celery Stalk-Derived carbon dots for detection of copper ions[J]. J Nanosci Nanotechnol, 2019, 19(6): 6077-6082. |
19 | WANG B G, TAN H, ZHANG T L, et al. Hydrothermal synthesis of N-doped carbon dots from an ethanolamine-ionic liquid gel to construct label-free multifunctional fluorescent probes towards Hg2+, Cu2+ and S 2 O 3 2 - [J]. Analyst, 2019, 144(9): 3013-3022. |
20 | LIU X R, ZHANG S X, XU H, et al. Nitrogen-doped carbon quantum dots from poly(ethyleneimine) for optical dual-mode determination of Cu2+ and L-cysteine and their logic gate operation[J]. ACS Appl Mater Interfaces, 2020, 12(42): 47245-47255. |
21 | HUANG S, ERLI Y, YAO J D, et al. Red emission nitrogen, boron, sulfur co-doped carbon dots for “on-off-on” fluorescent mode detection of Ag+ ions and L-cysteine in complex biological fluids and living cells[J]. Anal Chim Acta, 2018, 1035(4): 192-202. |
22 | LE T H, LEE H J, KIM J H, et al. Detection of ferric ions and catecholamine neurotransmitters via highly fluorescent heteroatom co-doped carbon dots[J]. Sensors, 2020, 20(12): 3470. |
23 | ZHAO L, WANG Y S, ZHAO X H, et al. Facile synthesis of nitrogen-doped carbon quantum dots with chitosan for fluorescent detection of Fe3+[J]. Polymers, 2019, 11(11): 1731. |
24 | ALI G, RAMA A B A, YOMEN A. Novel nitrogen-doped carbon dots prepared under microwave-irradiation for highly sensitive detection of mercury ions[J]. Heliyon, 2020, 6: e03750. |
25 | WU Z S, FENG M K, CHEN X X, et al. N-Dots as photoluminescent probe for rapid and selective detection of Hg2+ and Ag+ in aqueous solution[J]. J Mater Chem B, 2016, 4(12): 2086-2089. |
26 | 苗湘. 碳点的光学调控及其应用研究[D]. 中国科学院大学, 2018, 5. |
MIAO X. Synthesis of carbons dots with tunable optical properties and their applications[D]. University of Chinese Academy of Sciences, 2018, 5. | |
27 | 陈芳, 朱丽华, 王宏. 碳点的制备及荧光量子产率的测定——一个仪器分析综合实验[J]. 大学化学, 2019, 34(7): 67-72. |
CHEN F, ZHU L H, WANG H. Preparation of carbon dots and determination of their fluorescence quantum yield[J]. J Univ Chem, 2019, 34(7): 67-72. | |
28 | 刘杏芳, 杜华, 唐璜, 等. 土壤中重金属元素检测不同消解方法的比较[J]. 中国口岸科学技术, 2021, 9(3): 90-95. |
LIU X F, DU H, TANG H, et al. Comparison of different digestion methods for detection of heavy metal elements in soil[J]. 2021, 9(3): 90-95. | |
29 | JORGE E C, ALFONSO F, MARTA E, et al. Smart carbon dots as chemosensor for control of water contamination in organic media[J]. J Pre-proof, 2020, 329: 129262. |
30 | JIAO Y, GAO Y F, MENG Y T, et al. One-step synthesis of label-free ratiometric fluorescence carbon dots for the detection of silver ions and glutathione and cellular imaging applications[J]. ACS Appl Mater Interfaces, 2019, 11(18): 16822-16829. |
31 | LÓPEZ-CABAÑAA Z, VALDÉSB O, VERGARAA C, et al. Photophysical studies of the interactions of poly(amidoamine) generation zero (PAMAM G0) with copper and zinc ions[J]. J Lumin, 2015, 164: 23-30. |
32 | 张筱烨. 聚酰胺⁃胺改性PVDF膜的制备及铜离子吸附研究[D]. 天津工业大学, 2019, 1. |
ZHANG X Y. Preparation of polyamide-amine modified PVDF membrane and study on copper ion adsorption[D]. Tianjin Polytech University, 2019, 1. | |
33 | MADHURI B, SHREYA B, GAURAV V, et al. Water-dispersible fluorescent carbon dots as bioimaging agents and probes for Hg2+ and Cu2+ ions[J]. ACS Appl Nano Mater, 2020, 3(7): 7096-7104. |
34 | WANG L, LI M, LI W T, et al. Rationally designed efficient dual-mode colorimetric/fluorescence sensor based on carbon dots for detection of pH and Cu2+ ions[J]. ACS Sustainable Chem Eng 2018, 6(10): 12668-12674. |
35 | ZHAO L, LI H Y, XU Y, et al. Selective detection of copper ion in complex real samples based on nitrogen-doped carbon quantum dots[J]. Anal Bioanal Chem, 2018, 410(18): 4301-4309. |
[1] | 刘明言, 石秀顶, 李天国, 王静. 电化学分析方法检测重金属离子研究进展[J]. 应用化学, 2023, 40(4): 463-475. |
[2] | 冷泽山, 郭洪梅, 蔡函青, 张剑. 高效液相色谱-电雾式检测器法同时检测食品中8种人工甜味剂的应用[J]. 应用化学, 2023, 40(3): 436-440. |
[3] | 姜士鹏, 周禹希, 孟沛然, 谢炎轩, 宋祉怡, 赵洹影, 孙越. 基于无金属可见光诱导原子转移自由基聚合方法制备人血清白蛋白超微印迹传感器及其性能[J]. 应用化学, 2023, 40(2): 299-308. |
[4] | 王文栋, 李在均. 钌-石墨烯量子点人工酶合成及用于胡萝卜中辛硫磷的光度检测[J]. 应用化学, 2022, 39(8): 1285-1293. |
[5] | 唐连波, 付大友, 陈琦, 奉阳润, 熊桠林, 王竹青. 碳量子点增强气液相化学发光检测二氧化碳[J]. 应用化学, 2022, 39(8): 1294-1302. |
[6] | 徐凤州, 唐华英, 刘吴荟, 江怡凤, 李文凯, 陆献海. 水体中铜离子的现场可视化半定量快速检测[J]. 应用化学, 2022, 39(8): 1303-1311. |
[7] | 李东东, 秦丽, 唐录华, 高文惠. 碱性橙Ⅱ印迹传感器的制备及其应用[J]. 应用化学, 2022, 39(7): 1052-1064. |
[8] | 牛青芳, 艾欣, 王奕璇, 贺方玖, 罗彼, 梁文婷, 董川. 三维还原氧化石墨烯/β-环糊精复合物的合成及其电化学检测水中左氧氟沙星[J]. 应用化学, 2022, 39(7): 1129-1137. |
[9] | 张晓丽, 彭玉美, 王庆伟, 秦利霞, 刘肖霞, 康诗钊, 李向清. 纳米Ag/TiO2纳米管阵列基底构建及表面增强拉曼散射光谱检测与降解盐酸四环素[J]. 应用化学, 2022, 39(7): 1147-1156. |
[10] | 黎振华, 诸颖, 陈静, 宋世平. 抗污界面构建及其电化学生物传感应用进展[J]. 应用化学, 2022, 39(5): 736-748. |
[11] | 王涛, 刘厦, 刘宝林, 高志贤. 基于适配体和抗体的生物传感器在雌二醇检测中的应用[J]. 应用化学, 2022, 39(3): 374-390. |
[12] | 秦丽, 尤晓亭, 唐录华, 李建文, 张寅, 高文惠, 韩俊华. 基于纳米材料修饰的碱性嫩黄O印迹传感器的制备及其应用[J]. 应用化学, 2022, 39(12): 1880-1890. |
[13] | 孟丹, 郑开元, 陈珊珊, 卓钊龙, 王丽丽. 硅、氮共掺杂碳点荧光粉的制备及发光性能[J]. 应用化学, 2022, 39(11): 1766-1773. |
[14] | 赵俊, 杨树敏, 薛超凡, 吴衍青, 陈宜方, 邰仁忠. 上海光源极紫外光刻胶检测平台[J]. 应用化学, 2021, 38(9): 1168-1174. |
[15] | 邓培渊, 袁伟, 李长看, 陈龙欣, 杨莹莹. 防腐剂苯甲酸与人血清白蛋白相互作用[J]. 应用化学, 2021, 38(8): 1014-1021. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||