应用化学 ›› 2022, Vol. 39 ›› Issue (6): 969-979.DOI: 10.19894/j.issn.1000-0518.210269
收稿日期:
2021-06-02
接受日期:
2021-10-29
出版日期:
2022-06-01
发布日期:
2022-06-27
通讯作者:
曹从军
基金资助:
Cong-Jun CAO(), Han-Xiao MA, Cheng-Min HOU, Xiao-Jian DING, Biao GUAN
Received:
2021-06-02
Accepted:
2021-10-29
Published:
2022-06-01
Online:
2022-06-27
Contact:
Cong-Jun CAO
About author:
caocongjun@xaut.edu.comSupported by:
摘要:
重金属离子对生态环境以及人类健康造成了严重的危害,因此处理水体中的重金属离子迫在眉睫。采用共沉淀法,以乙基纤维素为模版,将四氧化三铁(Fe3O4)纳米颗粒与乙基纤维素复合,制备了乙基纤维素磁性复合材料(EC/Fe3O4)。探究了吸附添加量、溶液pH值和吸附时间等因素对溶液中Cu(Ⅱ)吸附过程的影响。结果表明,EC/Fe3O4表现出良好的吸附速率和吸附性能。吸附4 min,可达到吸附平衡状态。在Cu(Ⅱ)浓度为20 mg/L,pH=7,吸附时间为160 min条件下,EC/Fe3O4的单位吸附量qe为76.98 mg/g,最大去除率为94.68%。在经过8次吸附循环后,单位吸附量为62.21 mg/g。
中图分类号:
曹从军, 马含笑, 侯成敏, 丁小健, 管飙. 乙基纤维素磁性复合材料对溶液中铜离子的吸附性能[J]. 应用化学, 2022, 39(6): 969-979.
Cong-Jun CAO, Han-Xiao MA, Cheng-Min HOU, Xiao-Jian DING, Biao GUAN. Adsorption of Cu(Ⅱ) from Solution by Modified Magnetic Ethyl Cellulose[J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 969-979.
样品 Sample | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
ρ(Cu(Ⅱ))/(mg·L-1) | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
V(Cu(Ⅱ))/mL | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 |
V(H2O)/mL | 0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 | 0 |
V(DDTC)/mL | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
表1 标准Cu(Ⅱ)曲线测定溶液配比表
Table 1 Standard Cu(Ⅱ) solutions
样品 Sample | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
ρ(Cu(Ⅱ))/(mg·L-1) | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |
V(Cu(Ⅱ))/mL | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 |
V(H2O)/mL | 0.9 | 0.8 | 0.7 | 0.6 | 0.5 | 0.4 | 0.3 | 0.2 | 0.1 | 0 |
V(DDTC)/mL | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
图 2 EC、Fe3O4以及吸附前后EC/Fe3O4的FT-IR谱图(A);EC、Fe3O4和EC/Fe3O4的TG图(B);Fe3O4和EC/Fe3O4的VSM图(C)以及EC/Fe3O4的N2吸附-解吸等温线和BJH孔径分布图(D)
Fig.2 FT-IR spectra of EC,Fe3O4 and EC/Fe3O4 before and after adsorption (A);TG diagrams of EC,Fe3O4 and EC/Fe3O4 (B);VSM diagrams of Fe3O4 and EC/Fe3O4 (C);EC/Fe3O4 N2 adsorption-desorption isotherm and BJH pore size distribution map (D)
图6 EC、Fe3O4和EC/Fe3O4不同吸附剂对Cu(Ⅱ)单位吸附量的影响
Fig.6 The influence of different adsorbents of EC, Fe3O4 and EC/Fe3O4 on the unit adsorption capacity of Cu(Ⅱ)
图7 (A)准一阶动力学模型线性拟合曲线;(B)准二阶动力学模型线性拟合曲线
Fig.7 (A) The linear fitting curve of the quasi-first-order kinetic model;(B) The linear fitting curve of the quasi-second-order kinetic model
动力学模型 Kinetic model | 方程 Formula | k | qe | R2 | h |
---|---|---|---|---|---|
准一阶动力学 Quasi?first?order dynamics model | 0.0303 | 7.6118 | 0.8575 | — | |
准二阶动力学 Quasi?second?order dynamics model | 0.0297 | 65.350 | 0.9999 | 125.00 |
表2 动力学模型方程以及相关参数
Table 2 Kinetic model equations and related parameters
动力学模型 Kinetic model | 方程 Formula | k | qe | R2 | h |
---|---|---|---|---|---|
准一阶动力学 Quasi?first?order dynamics model | 0.0303 | 7.6118 | 0.8575 | — | |
准二阶动力学 Quasi?second?order dynamics model | 0.0297 | 65.350 | 0.9999 | 125.00 |
图8 (A)Langmuir模型拟合曲线;(B)Freundlich模型拟合曲线;(C)Temkin模型拟合曲线;(D)Dubinin-Radushkevich模型拟合曲线
Fig.8 (A) Langmuir model fitting curve;(B) Freundlich model fitting curve;(C) Temkin model fitting curve;(D) Dubinin-Radushkevich model fitting curve
等温线模型 Isotherm model | 方程 Formula | 参数 Parameter | 数值 Value |
---|---|---|---|
Langmuir | qmax | 108.70 | |
KL | 0.355 2 | ||
RL | 0.123 4 | ||
R2 | 0.994 3 | ||
Freundlich | n | 2.925 7 | |
KF | 1.406 5 | ||
R2 | 0.762 2 | ||
Temkin | bT | 129.19 | |
kT | 6.050 | ||
R2 | 0.831 7 | ||
Dubinin?Radushkevich | qmax | 97.553 | |
E | 912.87 | ||
R2 | 0.923 2 |
表3 等温线模型方程以及相关参数
Table 3 Isotherm model equations and related parameters
等温线模型 Isotherm model | 方程 Formula | 参数 Parameter | 数值 Value |
---|---|---|---|
Langmuir | qmax | 108.70 | |
KL | 0.355 2 | ||
RL | 0.123 4 | ||
R2 | 0.994 3 | ||
Freundlich | n | 2.925 7 | |
KF | 1.406 5 | ||
R2 | 0.762 2 | ||
Temkin | bT | 129.19 | |
kT | 6.050 | ||
R2 | 0.831 7 | ||
Dubinin?Radushkevich | qmax | 97.553 | |
E | 912.87 | ||
R2 | 0.923 2 |
序号 No. | 吸附剂 Adsorbents | 吸附条件 Condition | 可再生性能 Reusable performance | 参考文献 Ref. |
---|---|---|---|---|
1 | DTPA?壳聚糖 DTPA?Chitosan | pH=3,25 ℃ | 经过6个循环后,去除率从42.38%降低至24.23% After 6 cycles,the removal rate decreased from 42.38% to 24.23% | [ |
2 | Fe3O4@SO3Na | pH=5,25 ℃ | 经过2个循环后,吸附量从16.13降低至14.54 mg/g After 2 cycles,the adsorption capacity decreased from 16.13 to 14.54 mg/g | [ |
3 | 磁性氧化石墨烯 Magnetic graphene oxide | pH=6,20 ℃ | 经过5个循环后,吸附容量减少16.25% After 5 cycles,the adsorption capacity is reduced by 16.25% | [ |
4 | PEI改性磁性膨润土 PEI/KH560/MBent | pH=5,20 ℃ | 经过5个循环后,吸附量为首次吸附量的60% After 5 cycles,the adsorption capacity is 60% of the first adsorption capacity | [ |
表4 类似吸附剂的可再生性能对比
Table 4 Comparison of the renewable performance of similar adsorbents
序号 No. | 吸附剂 Adsorbents | 吸附条件 Condition | 可再生性能 Reusable performance | 参考文献 Ref. |
---|---|---|---|---|
1 | DTPA?壳聚糖 DTPA?Chitosan | pH=3,25 ℃ | 经过6个循环后,去除率从42.38%降低至24.23% After 6 cycles,the removal rate decreased from 42.38% to 24.23% | [ |
2 | Fe3O4@SO3Na | pH=5,25 ℃ | 经过2个循环后,吸附量从16.13降低至14.54 mg/g After 2 cycles,the adsorption capacity decreased from 16.13 to 14.54 mg/g | [ |
3 | 磁性氧化石墨烯 Magnetic graphene oxide | pH=6,20 ℃ | 经过5个循环后,吸附容量减少16.25% After 5 cycles,the adsorption capacity is reduced by 16.25% | [ |
4 | PEI改性磁性膨润土 PEI/KH560/MBent | pH=5,20 ℃ | 经过5个循环后,吸附量为首次吸附量的60% After 5 cycles,the adsorption capacity is 60% of the first adsorption capacity | [ |
1 | LIU R P, XU Y N, ZHANG J H, et al. Effects of heavy metal pollution on farmland soils and crops: a case study of the Xiaoqinling Gold Belt, China[J]. China Geol, 2020, 3(3): 402-410. |
2 | SHARMA R, JASROYIA T, KUMAR R, et al. Multi-biological combined system: a mechanistic approach for removal of multiple heavy metals[J]. Chemosphere, 2021, 276: 130018-130030. |
3 | CASTRO M R, GONZALEZ M L L, GARCIA D O. Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water[J]. Chemosphere, 2021, 270: 129421-129437. |
4 | ZENG W Z, GUO W X, LI B, et al. Kinetics and mechanistic aspects of removal of heavy metal through gas-liquid sulfide precipitation: a computational and experimental study[J]. J Hazard Mater, 2021, 408: 124868-124875. |
5 | YAZAN I, VINCENZO N, FAWZI B, et al. Preparation of novel polyvinylidene fluoride (PVDF)-Tin(IV) oxide (SnO2) ion exchange mixed matrix membranes for the removal of heavy metals from aqueous solutions[J]. Sep Purif Technol, 2020, 250: 117250-117264. |
6 | EBRAHIMIAN J, MOHSENNIA M, KHAYATKASHANI M. Photocatalytic-degradation of organic dye and removal of heavy metal ions using synthesized SnO2 nanoparticles by Vitex agnus⁃castus fruit via a green route[J]. Mater Lett, 2020, 263(263): 127255-127258. |
7 | VESNA K, TAMARA U, BRANKA P. A review on adsorbents for treatment of water and wastewaters containing copper ions[J]. Chem Eng Sci, 2018, 192: 273-287. |
8 | 王重庆, 王晖, 江小燕, 等. 生物炭吸附重金属离子的研究进展[J]. 化工进展, 2019, 38(1): 692-706. |
WANG C Q, WANG H, JIANG X Y, et al. Research advances on adsorption of heavy metals by biochar[J]. Chem Ind Eng Prog, 2019, 38(1): 692-706. | |
9 | ISMAILA O S, WEN D O, FAIZ B M S. Chitosan modifications for adsorption of pollutants⁃a review[J]. J Hazard Mater, 2021, 408(1): 124889-124904. |
10 | 张波波, 张文娟, 杜雪岩, 等. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102. |
ZHANG B B, ZHANG W J, DU X Y, et al. Research progress in adsorption of heavy metal ions in wastewater by iron-based magnetic nanomaterial[J]. J Mater Eng, 2020, 48(7): 93-102. | |
11 | 王希越, 明明, 连丽丽, 等. 磁性氧化石墨烯纳米粒子的制备及其对大红染料的去除[J]. 应用化工, 2019, 48(10): 2324-2327. |
WANG X Y, MING M, LIAN L L, et al. Preparation of magnetic graphene oxide nanoparticles and its application for red dye removal[J]. Appl Chem Ind, 2019, 48(10): 2324-2327. | |
12 | HE X N, CHE R X, WANG Y L, et al. Core-nanoshell magnetic composite material for adsorption of Pb(II) in wastewater[J]. J Environ Chem Eng, 2015, 3(3): 1720-1724. |
13 | PUJA R, PREETI, SUMAN, et al. Sequestration of cadmium ions from aqueous phase using magnetic chitosan composite[J]. Mater Today Proc, 2022, 49(8): 3375-3383. |
14 | 高红芳, 杨辉. 改性二氧化硅/乙基纤维素复合膜的制备及性能[J]. 精细化工, 2020, 37(5): 1018-1023. |
GAO H F, YANG H. Preparation and properties of modified silica/ethyl cellulose composite film[J]. Fine Chem, 2020, 37(5): 1018-1023. | |
15 | WANG J, LIU M, DUAN C, et al. Preparation and characterization of cellulose-based adsorbent and its application in heavy metal ions removal[J]. Carbohydr Polym, 2019, 206: 837-843. |
16 | 章子恒, 胡然, 马艺瑾, 等. 紫外-可见分光光度法测定含铜废水中的铜离子[J]. 大学化学, 2021, 9: 157-163. |
ZHANG Z H, HU R, MA Y Y, et al. An experiment for determining copper(II) ions in copper-containing sewage by UV-Vis spectrophotometry[J]. Univ Chem, 2021, 9: 157-163. | |
17 | LARISSA F C, LUIS A M R, LUCAS S R, et al. Low-cost magnetic activated carbon with excellent capacity for organic adsorption obtained by a novel synthesis route[J]. J Environ Chem Eng, 2021, 9(2): 105061-105069. |
18 | 张铁军, 李博, 韩剑宏, 等. 磁性改性玉米秸秆材料吸附铬的性能及机理研究[J]. 工业水处理, 2020, 40(12): 100-105. |
ZHANG T J, LI B, HAN J H, et al. Study on adsorption performance and mechanism of chromium on magnetic modified corn stalk[J]. Ind Water Treat, 2020, 40(12): 100-105. | |
19 | 刘江龙, 郭焱, 席艺慧. FeCl3和十六烷基三甲基溴化铵改性赤泥对水中铜离子的吸附性能和机理[J]. 化工进展, 2020, 39(2): 776-789. |
LIU J L, GUO Y, XI Y H. Adsorption and mechanism of copper ions in water by red mud modified with FeCl3 and hexadecyl trimethyl ammonium bromide (CTAB)[J]. Chem Ind Eng Prog, 2020, 39(2): 776-789. | |
20 | ZHENG L W, GAO Y C, DU J H, et al. A novel, recyclable magnetic biochar modified by chitosan-EDTA for the effective removal of Pb(II) from aqueous solution[J]. RSC Adv, 2020, 10: 40196-40205. |
21 | SALEEM A, WANG J, SUN T, et al. Enhanced and selective adsorption of copper ions from acidic conditions by diethylenetriaminepentaacetic acid-chitosan sewage sludge composite[J]. J Environ Chem Eng, 2020, 8(6): 104430-104439. |
22 | 王家宏, 雷思莉. 磺酸基改性磁性吸附剂去除水中的Cu(Ⅱ)[J]. 环境化学, 2019, 38(8): 1785-1792. |
WANG J J, LEI S L. Removal of Cu(Ⅱ) by sulfonic acid modified magnetic adsorbent[J]. Environ Chem, 2019, 38(8): 1785-1792. | |
23 | 肖海梅, 蔡蕾, 张朝晖, 等. 磁性氧化石墨烯/MIL-101(Cr)表面金属离子印迹聚合物制备及其对Cu(Ⅱ)和Pb(Ⅱ)选择性吸附[J]. 应用化学, 2020, 37(9): 1076-1086. |
XIAO H M, CAI L, ZHANG C H, et al. Preparation of ion-imprinted polymers based on magnetic graphene oxide/MIL-101(Cr) and selective adsorption of Cu(II) and Pb(II)[J]. Chinese J Appl Chem, 2020, 37(9): 1076-1086. | |
24 | 孙志勇, 王智懿, 张娇, 等. 聚乙烯亚胺改性磁性膨润土对Pb2+和Cu2+的吸附性能[J]. 精细化工, 2021, 38(1): 169-175. |
SUN Z Y, WANG Z Y, ZHANG J, et al. Adsorption properties of polyethyleneimine modified magnetic bentonite for Pb2+ and Cu2+[J]. Fine Chem, 2021, 38(1): 169-175. |
[1] | 元宁, 马洁, 张晋玲, 张建胜. 蒸气辅助合成PCN-6(M)双金属有机框架材料及其CH4和CO2吸附性能[J]. 应用化学, 2023, 40(6): 896-903. |
[2] | 郝晨丽, 丁庆伟, 贾世昌, 毛泱博, 王松柏, 马骏. 硫辛酸修饰钛酸纳米管吸附亚甲基蓝的性能[J]. 应用化学, 2023, 40(5): 749-757. |
[3] | 赵金丽, 于宗仁, 苏伯民. 墓葬壁画中蛋清胶结材料的热裂解-气质联用分析[J]. 应用化学, 2023, 40(4): 562-570. |
[4] | 熊波, 黎泰华, 周武平, 刘长宇, 徐晓龙. 一步热聚合法制备Cu2O/CuO-g-C3N4吸附剂及其对甲基橙吸附的性能[J]. 应用化学, 2023, 40(3): 420-429. |
[5] | 张琴, 刘文彬, 樊利娇, 谢宇铭, 黄国林. 功能化介孔二氧化硅的制备及其吸附分离水中铀的研究进展[J]. 应用化学, 2023, 40(2): 169-187. |
[6] | 刘也, 郭少波, 梁艳莉, 葛红光, 马剑琪, 刘智峰, 刘波. 核壳型纳米复合材料CuFe2O4@NH2@Pt的制备及催化性能[J]. 应用化学, 2022, 39(8): 1237-1245. |
[7] | 赵跃华, 王大鹏. 氨基化氧化石墨烯和脂肪酸在水-油界面的共吸附动力学[J]. 应用化学, 2022, 39(8): 1274-1284. |
[8] | 薛晨怡, 刘林佳, 王婷, 宫磊, 金龙, 韩建刚, 李胎花. 荧光法检测重金属铅离子的研究进展[J]. 应用化学, 2022, 39(7): 1039-1051. |
[9] | 薛松松, 解正峰, 何佳伟, 张天怡, 夏保平, 李雨芹. 高选择性快速识别汞(Ⅱ)离子的磺酰腙型探针的合成及在吸附中的应用[J]. 应用化学, 2022, 39(5): 760-768. |
[10] | 王雪, 王意波, 王显, 祝建兵, 葛君杰, 刘长鹏, 邢巍. 酸性电解水过程中氧析出反应的机理及铱基催化剂的研究进展[J]. 应用化学, 2022, 39(4): 616-628. |
[11] | 张健爽, 高美珍, 王梦瑶, 石琪, 董晋湘. 沸石咪唑酯骨架结构材料ZIF-71用于低浓度生物基2,3-丁二醇/1,3-丙二醇的吸附分离性能[J]. 应用化学, 2022, 39(11): 1735-1745. |
[12] | 袁定坤, 褚维凡, 倪加惠. 亚铁氰化铜-聚丙烯酰胺/羧甲基纤维素/石墨烯复合水凝胶的制备及铷吸附性能[J]. 应用化学, 2022, 39(11): 1746-1756. |
[13] | 周雯, 佟珊珊. 新型吸附材料分离和富集贵金属的研究进展[J]. 应用化学, 2021, 38(8): 897-910. |
[14] | 刘文彬, 杨莎莎, 黄国林, 樊利娇, 谢宇铭. 磷酸化黄原胶/氧化石墨烯的合成及其对铀的选择性吸附[J]. 应用化学, 2021, 38(6): 658-667. |
[15] | 朱富强, 丁卫平, 韩岩君, 田洪根. 脂质去除分散固相萃取-超高效液相色谱-串联质谱法测定动物源性食品中5种α2-受体激动剂[J]. 应用化学, 2021, 38(6): 713-721. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||