应用化学 ›› 2022, Vol. 39 ›› Issue (6): 900-911.DOI: 10.19894/j.issn.1000-0518.210183
收稿日期:
2021-04-12
接受日期:
2021-08-30
出版日期:
2022-06-01
发布日期:
2022-06-27
通讯作者:
李威威
基金资助:
Mei-Lun ZHANG, Hong-Ran LING, Zai-Chun SUN, Bing-Chu MEI, Wei-Wei LI()
Received:
2021-04-12
Accepted:
2021-08-30
Published:
2022-06-01
Online:
2022-06-27
Contact:
Wei-Wei LI
About author:
leeww0229@163.comSupported by:
摘要:
氟化镁钡(BaMgF4)材料不仅拥有铁电性、光学性、多铁性等优良性能,而且作为氟化物,它也具备声子能量低、发光效率高、化学稳定性好等优势,近年来已被广泛用作固态激光材料和稀土离子的发光基质。但是,获得尺寸、形貌合适的纯相纳米级氟化镁钡粉体材料仍然是其制备过程中需要解决的关键问题。本文重点对国内外关于氟化镁钡粉体材料的制备方法进行了总结,从原料、氟化剂、反应条件等方面详细介绍了每种方法在应用过程中不断改进和完善之处,综合比较分析了不同制备工艺的特点和局限性,为今后高性能氟化镁钡粉体材料的制备及应用提供参考。
中图分类号:
张梅伦, 凌红冉, 孙在春, 梅炳初, 李威威. 氟化镁钡粉体制备方法研究进展[J]. 应用化学, 2022, 39(6): 900-911.
Mei-Lun ZHANG, Hong-Ran LING, Zai-Chun SUN, Bing-Chu MEI, Wei-Wei LI. Research Progress on the Preparation Methods of BaMgF4 Powders[J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 900-911.
图1 (a) BaMgF4的晶体结构的单位晶胞表示,BaMgF4的3维晶体结构; (b) 代表沿a轴的MgF6八面体之字形链; (c) Ba离子沿c轴截留在两条平行的MgF6八面体之字形链的空隙之间[5]
Fig.1 (a) Unit cell representation of the crystal structure of BaMgF4, 3-dimensional crystal structure of BaMgF4, (b) representing MgF6 octahedral zigzag chains along a-axis and (c)trapped Ba ions in between the void of two parallel MgF6 octahedral zigzag chains along c-axis[5]
图2 通过水热法合成的(A)未掺杂BaMgF4粉体和(B) 掺杂的BaMgF4粉体的SEM图像[15]
Fig.2 SEM images of (A) undoped and (B) doped BaMgF4 powders synthesized by hydrothermal method[15]
图3 通过水热法合成的(a)未掺杂和(b,c)掺杂的BaMgF4粉体的SEM图像; (d)未掺杂的BaMgF4粉体的EDS图谱[17]
Fig.3 SEM image of (a) undoped and (b,c) doped BaMgF4 powders synthesized by hydrothermal method; (d) EDS pattern of undoped BaMgF4 powders[17]
图5 不同放大倍率下观察到的通过反相微乳液法合成的纳米棒聚集成“小胡子”状形簇[24]
Fig.5 Nanorods synthesized by reverse microemulsion method aggregated into “mustache” clusters observed at different magnifications[24]
图6 在1 mm厚的玻璃载玻片上,一层厚约240 μm的透明PMMA/BaMgF4纳米粒子薄膜[24]
Fig.6 A photograph of 240 μm PMMA/BaMgF4 nanoparticle film on a 1 mm thick glass slide showing the transparency[24]
图7 (a) BaMgF4微棒的低(左)和高(右)分辨率SEM图像, (b) BaMgF4基体的元素面扫描图[5]
Fig.7 (a) Low (left) and high (right) resolution SEM images of BaMgF4 micro-rods, (b) combined elemental mapping of the BaMgF4 host[5]
方法 Methods | 优点 Advantages | 缺点 Disadvantages | 应用前景 Application prospects |
---|---|---|---|
高温固相法 High temperature solid state method | 工艺成本低、产量大、过程简单 Low process cost, high output, simple procdure | 粉体粒径偏大,还会残留BaF2和MgF2等杂质 Large particle size, and remaining impurities such as BaF2 and MgF2 | - |
机械球磨法 Mechanical milling method | 能够制备非平衡材料,效率高 Ability to prepare non?equilibrium materials, high efficiency | 产物整体的结晶度较低,容易引入金属杂质 Low overall crystallinity, and remaining metal impurities | - |
水热法 Hydrothermal method | 产品物相均匀,纯度高,结晶良好, 反应条件可控 Homogeneous phase, high purity, good crystallization, and controllable reaction conditions | 操作方法复杂,实验条件要求高,颗粒易长大 Complicated operation method, high experimental conditions, and the particles are easy to grow up | |
溶剂热法 Solvothermal method | 利用有机溶剂可以有效控制颗粒的 尺寸和团聚程度 The organic solvents can be used to effectively control the size and degree of agglomeration of particles | 颗粒粒径不均匀,很难彻底除去产物中 残留的有机溶剂 Non?uniform particle size, and it is difficult to remove the residual organic solvent completely | - |
溶胶?凝胶法 Sol?gel method | 工艺流程简单,粉体粒度均匀 Simple preparation process flow, uniform grain size | 反应所需时间较长,原料为金属有机物时难以除净 Long reaction time, and it is difficult to remove the metal organic materials completely. | 可用来制备薄膜等 功能性材料 Preparing functional materials such as films |
反相微乳液法 Reversed?phase microemulsion method | 可控制合成颗粒的大小,产物粒度 分布窄,有利于连续工业化生产 Controllable particle size, narrow size distribution, and continuous industrial production | 成本高,易引入其它杂质元素 High process cost, other impurity elements can be introduced easily | 可用于光学聚合物 薄膜的开发 Development of optical polymer films |
共沉淀法 Coprecipitation method | 纯度高,杂质少,工艺流程简单, 成本低 High purity, less impurities, simple process flow and low process cost | 颗粒容易生长或聚集,导致粉体整体粒径 偏大或发生严重的团聚 The particles are easy to grow up or agglomerate, causing the overall particle size to be too large or generating serious agglomeration | - |
表1 BaMgF4粉体制备方法特点及应用前景
Table 1 Characteristics and application prospects of preparation methods of BaMgF4 powders
方法 Methods | 优点 Advantages | 缺点 Disadvantages | 应用前景 Application prospects |
---|---|---|---|
高温固相法 High temperature solid state method | 工艺成本低、产量大、过程简单 Low process cost, high output, simple procdure | 粉体粒径偏大,还会残留BaF2和MgF2等杂质 Large particle size, and remaining impurities such as BaF2 and MgF2 | - |
机械球磨法 Mechanical milling method | 能够制备非平衡材料,效率高 Ability to prepare non?equilibrium materials, high efficiency | 产物整体的结晶度较低,容易引入金属杂质 Low overall crystallinity, and remaining metal impurities | - |
水热法 Hydrothermal method | 产品物相均匀,纯度高,结晶良好, 反应条件可控 Homogeneous phase, high purity, good crystallization, and controllable reaction conditions | 操作方法复杂,实验条件要求高,颗粒易长大 Complicated operation method, high experimental conditions, and the particles are easy to grow up | |
溶剂热法 Solvothermal method | 利用有机溶剂可以有效控制颗粒的 尺寸和团聚程度 The organic solvents can be used to effectively control the size and degree of agglomeration of particles | 颗粒粒径不均匀,很难彻底除去产物中 残留的有机溶剂 Non?uniform particle size, and it is difficult to remove the residual organic solvent completely | - |
溶胶?凝胶法 Sol?gel method | 工艺流程简单,粉体粒度均匀 Simple preparation process flow, uniform grain size | 反应所需时间较长,原料为金属有机物时难以除净 Long reaction time, and it is difficult to remove the metal organic materials completely. | 可用来制备薄膜等 功能性材料 Preparing functional materials such as films |
反相微乳液法 Reversed?phase microemulsion method | 可控制合成颗粒的大小,产物粒度 分布窄,有利于连续工业化生产 Controllable particle size, narrow size distribution, and continuous industrial production | 成本高,易引入其它杂质元素 High process cost, other impurity elements can be introduced easily | 可用于光学聚合物 薄膜的开发 Development of optical polymer films |
共沉淀法 Coprecipitation method | 纯度高,杂质少,工艺流程简单, 成本低 High purity, less impurities, simple process flow and low process cost | 颗粒容易生长或聚集,导致粉体整体粒径 偏大或发生严重的团聚 The particles are easy to grow up or agglomerate, causing the overall particle size to be too large or generating serious agglomeration | - |
1 | EIBSCHUTZ M, GUGGENHEIM H J. Antiferromagnetic-piezoelectric crystals: BaMF4 (M=Mn,Fe,Co and Ni)[J]. Solid State Commun, 1968, 6(10): 737-739. |
2 | EIBSCHUTZ M, GUGGENHEIM H J, WEMPLE S H, et al. Ferroelectricity in BaMF4[J]. Phys Lett A, 1969, 29(7): 409-410. |
3 | 吴昊滢. BaMgF4材料的制备及其倍频研究[D]. 上海: 上海交通大学, 2019. |
WU H Y. Research of synthesis and second harmonic generation of BaMgF4[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
4 | KORE B P, KUMAR A, ERASMUS L, et al. Energy transfer mechanisms and optical thermometry of BaMgF4∶Yb3+,Er3+ phosphor[J]. Inorg Chem, 2018, 57(1): 288-299. |
5 | KORE B P, TAMBOLI S, DHOBLE N S, et al. Efficient resonance energy transfer study from Ce3+ to Tb3+ in BaMgF4[J]. Mater Chem Phys, 2017, 187: 233-244. |
6 | 盛天琦. 基于能量传递的稀土掺杂微纳米发光材料的制备及其发光特性研究[D]. 长春:吉林大学物理学院, 2013. |
SHENG T Q. Researches on synthesis and luminescence of rare earth ions doped micro/nano luminescent materials based on energy transfer[D]. Changchun: Jilin University, 2013. | |
7 | 刘行仁, 石士考, 吴渊. BaMgF4中Gd3+的光谱以及Gd3+和Tb3+离子之间的能量传递[J]. 发光学报, 1990, 11(4): 277-285. |
LIU X R, SHI S K, WU Y. Spectra of Gd3+ ion and energy transfer between Gd3+ and Tb3+ ions in barium magnesium fluorides[J]. Chinese J Lumin, 1990, 11(4): 277-285. | |
8 | QUILTY J W, EDGAR A, SCHIERNING G. Photostimulated luminescence and thermoluminescence in europium-doped barium magnesium fluoride[J]. Curr Appl Phys, 2008, 8(3/4): 420-424. |
9 | 刘银, 王静, 张明旭, 等. 机械球磨法制备纳米材料的研究进展[J]. 材料导报, 2003, 17(7): 20-22, 29. |
LIU Y, WANG J, ZHANG M X, et al. Research and development of mechanical attrition method in nanostructural materials[J]. Mater Rep, 2003, 17(7): 20-22, 29. | |
10 | PREISHUBER-PFLUGL F, WILKENING M. Evidence of low dimensional ion transport in mech-anosynthesized nanocrystalline BaMgF4[J]. Dalton Trans, 2014, 43(26): 9901-9908. |
11 | SCHOLZ G, BREITFELD S, KRAHL T, et al. Mechanochemical synthesis of MgF2-MF2 composite systems (M=Ca,Sr,Ba)[J]. Solid State Sci, 2015, 50: 32-41. |
12 | DARR J A, ZHANG J Y, MAKWANA N M, et al. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions[J]. Chem Rev, 2017, 117(17): 11125-11238. |
13 | 黄丰, 郑伟, 王梦晔, 等. 氧化锌单晶生长、载流子调控与应用研究进展[J]. 人工晶体学报, 2021, 50(2): 209-243. |
HUANG F, ZHENG W, WANG M Y, et al. Development of zinc oxide: bulk crystal growth, arbitrary regulation of carrier concentration and practical applications[J]. J Synth Cryst, 2021, 50(2): 209-243. | |
14 | KIM S W, CHANG H Y, HALASYAMANI P S. Selective Pure-phase synthesis of the multiferroic BaMF4 (M=Mg,Mn,Co,Ni, and Zn) family[J]. J Am Chem Soc, 2010, 132(50): 17684-17685. |
15 | YAN Z Y, YAN B, JIA L P. Novel kinds of down/up-conversion luminescent rare earth doped fluoride BaMgF4∶RE3+ microcrystals[J]. Mater Res Bull, 2013, 48(10): 4402-4405. |
16 | 刘忠坤. 等离子体共振效应对掺杂纳米多铁氟化物材料的发光性质的影响[D]. 沈阳: 辽宁大学, 2015. |
LIU Z K. Effect of plasmon-enhancement on luminescent properties of doped multiferroic fluoride nanoparticles[D]. Shenyang: Liaoning University, 2015. | |
17 | XIA W P, ZHANG Y F, XIONG J, et al. Facile synthesis, morphology and tunable photoluminescence properties of BaMgF4∶Ce3+/Tb3+/Eu3+phosphors[J]. Cryst Eng Comm, 2019, 21(2): 339-347. |
18 | YIN J W, WANG J, MA Y B, et al. Recent advances in the controlled synthesis and catalytic applications of two-dimensional rhodium nanomaterials[J]. ACS Mater Lett, 2021, 3(1): 121-133 |
19 | 任秀秀, 赵省向, 韩仲熙, 等. 纳米复合含能材料的制备方法、复合体系及其性能的研究进展[J]. 材料导报, 2019, 33(23): 3939-3948. |
REN X X, ZHAO X X, HAN Z X, et al. Research progress on preparation methods, composite system and its property of nano-composite energetic materials[J]. Mater Rev, 2019, 33(23): 3939-3948. | |
20 | AHMOUM H, LI G J,PIAO Y J, et al. Ab-initio, Monte Carlo and experimental investigation on structural,electronic and magnetic properties of Zn1- xNixO nanoparticles prepared via sol-gel method[J]. J Alloys Compd, 2021, 854: 157142. |
21 | FUJIHARA S, ONO S, KISHIKI Y, et al. Sol-gel synthesis of inorganic complex fluorides using trifluoroacetic acid[J]. J Fluorine Chem, 2000, 105(1): 65-70. |
22 | 刘贤哲, 张旭, 陶洪, 等. 溶胶-凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展[J]. 物理学报, 2020, 69(22): 248-263. |
LIU X Z, ZHANG X, TAO H, et al. Research progress of tin oxide-based thin films and thin-film transistors prepared by sol-gel method[J]. Acta Phys Sin, 2020, 69(22): 248-263. | |
23 | 周富荣, 左海山, 陈少锋, 等. 反相微乳法制备单分散纳米二氧化硅[J]. 江汉大学学报(自然科学版), 2006, 34(2): 27-30. |
ZHOU F R, ZUO H S, CHEN S F, et al. Preparation of monodisperse nanosize silica in reverse micelle microemulsion[J]. J Jianghan Univ (Nat Sci), 2006, 34(2): 27-30. | |
24 | JANSSENS S, WILLIAMS G V M, CLARKE D. Synthesis and characterization of rare earth and transition metal doped BaMgF4 nanoparticles[J]. J Lumin, 2013, 134: 277-283. |
25 | YANG S H, LEE H Y, TSENG P C, et al. Photoelectric properties of Sr2MgSi2O7:Eu2+ phosphors produced by co-precipitation method[J]. J Lumin, 2021, 231: 117787. |
26 | BELEARE P D, JOSHI C P, MOHARIL S V, et al. One step synthesis of complex fluoride powders for solid-state lasers[J]. J Alloys Compd, 2008, 464(1/2): 296-300. |
27 | KORE B P, KUMAR A, PANDEY A, et al. Spectroscopic investigation of up-conversion properties in green emitting BaMgF4∶Yb3+,Tb3+ phosphor[J]. Inorg Chem, 2017, 56(9): 4996-5005. |
28 | KORE B P, KUMAR A, ERASMUS L, et al. Energy transfer mechanisms and optical thermometry of BaMgF4∶Yb3+,Er3+ phosphor[J]. Inorg Chem, 2018, 57(1): 288-299. |
29 | KORE B P, KUMAR A, KROON R E, et al. Origin of visible and near IR upconversion in Yb3+-Tm3+-Er3+ doped BaMgF4 phosphor through energy transfer and cross-relaxation processes[J]. Opt Mater, 2020, 99. |
30 | 潘成龙, 刘红利, 郭芸, 等. BaMgF4∶Er3+,Yb3+上转换纳米晶的合成及其发光性能研究[J]. 物理学报, 2014, 63(15): 210-214. |
PAN C L, LIU H L, GUO Y, et al. Synthesis and upconversion luminescent properties of BaMgF4∶Er3+,Yb3+ nanocrystals[J]. Acta Phys Sin, 2014, 63(15): 210-214. |
[1] | 熊玉华, 周蕾, 杨世忠, 牟伯中. 低温β-甘露聚糖酶的酶学性质及破胶性能[J]. 应用化学, 2023, 40(1): 134-145. |
[2] | 林锦, 王芳珠, 吕灵灵. 工业原料制备大孔拟薄水铝石及在异佛尔酮选择性加氢中的应用[J]. 应用化学, 2023, 40(1): 79-90. |
[3] | 王显, 杨小龙, 马荣鹏, 刘长鹏, 葛君杰, 邢巍. 单原子分散的Ir-N-C燃料电池阳极抗中毒催化剂[J]. 应用化学, 2022, 39(8): 1202-1208. |
[4] | 刘静婉, 李琼, 张涛, 王恩鹏, 王欢, 陈雪, 陈长宝. 从改良土壤角度探索人参连作障碍解决方法的研究进展[J]. 应用化学, 2022, 39(12): 1818-1832. |
[5] | 吴利军, 郭守杰, 张超, 李知声, 李唯聪, 杨长春. 锂钠合金的原位电化学制备及“锂+钠”共储特性[J]. 应用化学, 2022, 39(11): 1757-1765. |
[6] | 孟丹, 郑开元, 陈珊珊, 卓钊龙, 王丽丽. 硅、氮共掺杂碳点荧光粉的制备及发光性能[J]. 应用化学, 2022, 39(11): 1766-1773. |
[7] | 石玉芳, 王迎进, 孙金鱼, 赵明根. 含多甲氧基芳香基双查尔酮的合成、表征及光热性能[J]. 应用化学, 2022, 39(02): 235-240. |
[8] | 高峰, 徐子迪, 管纯倩, 王研, 臧云浩, 顾建峰, 曲江英. 硫/石墨烯气凝胶的绿色可控制备及锂硫电池性能[J]. 应用化学, 2021, 38(4): 439-446. |
[9] | 徐峰, 张坤, 阴凤琴, 徐斐, 庞雨萱, 陈诗婷. 阴离子印迹聚合物的制备及其应用研究进展[J]. 应用化学, 2021, 38(2): 123-135. |
[10] | 李琳, 钱四化, 吕天琦, 王宇辉, 郑建萍. 新一代测序技术的文库制备方法研究进展[J]. 应用化学, 2021, 38(1): 11-23. |
[11] | 郜思衡, 杨宇, 毋金玲, 秦利霞, 康诗钊, 李向清. 氧化石墨烯/超细银粒子复合物的制备及其光电性能[J]. 应用化学, 2020, 37(8): 923-929. |
[12] | 樊哲,张盛盛,唐家豪,范萍. 分级纳米材料的结构、制备及其应用[J]. 应用化学, 2020, 37(5): 489-501. |
[13] | 张转芳, 郑建华, 辛建娇, 赵楠, 陈洁, 许芮. Keggin型多酸基晶态材料的合成及催化性能[J]. 应用化学, 2020, 37(4): 481-488. |
[14] | 王艺晨, 罗静, 刘仁, 戴胜华. 石墨烯空心微球制备方法的研究进展[J]. 应用化学, 2020, 37(12): 1374-1383. |
[15] | 陈佳琪, 周焱, 孙敬文, 朱俊武, 汪信, 付永胜. 基于金属有机框架中空材料的研究进展[J]. 应用化学, 2020, 37(11): 1221-1235. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||