应用化学 ›› 2022, Vol. 39 ›› Issue (6): 888-899.DOI: 10.19894/j.issn.1000-0518.210211
郭峤志, 杨振华(), 张月霞, 孟雅婷, 曹宇娟, 孙宣森, 张琪琦, 双少敏, 董川
收稿日期:
2021-04-29
接受日期:
2021-08-28
出版日期:
2022-06-01
发布日期:
2022-06-27
通讯作者:
杨振华
基金资助:
Qiao-Zhi GUO, Zhen-Hua YANG(), Yue-Xia ZHANG, Ya-Ting MENG, Yu-Juan CAO, Xuan-Sen SUN, Qi-Qi ZHANG, Shao-Min SHUANG, Chuan DONG
Received:
2021-04-29
Accepted:
2021-08-28
Published:
2022-06-01
Online:
2022-06-27
Contact:
Zhen-Hua YANG
About author:
yzh429@sxu.edu.cnSupported by:
摘要:
石墨烯量子点(GQDs)是一种新型碳基准零维材料,不但具有石墨烯的独特平面结构,同时具备碳点的量子限制效应和边界效应。GQDs具有独特的光学性质、低毒性、高荧光稳定性和高生物相容性,被广泛应用于检测、传感、催化、细胞成像、药物递送和污染治理等领域。GQDs的合成分为自上而下法和自下而上法,前者将大尺寸的石墨烯、石墨、碳材料切割成纳米级的量子点,后者使用不同的前驱体,通过水热法、热裂解法等方法合成石墨烯量子点。柠檬酸(CA)是一种重要的有机酸,室温下是白色结晶状粉末,是自下而上法合成GQDs的一种常用前驱体,近年来有许多关于以CA为前驱体合成不同GQDs的研究,以CA为前驱体合成的GQDs(CA-GQDs)在生物医药、荧光检测、成像等领域均有应用,具有较好的应用前景。对近年来基于CA的合成方法和具体应用进行了总结和回顾,旨在将现有CA-GQDs的相关成果尽可能汇总和展现,以对相关领域研究工作者提供一定参考,并对未来CA-GQDs较有前景的研究方向进行了展望。
中图分类号:
郭峤志, 杨振华, 张月霞, 孟雅婷, 曹宇娟, 孙宣森, 张琪琦, 双少敏, 董川. 基于柠檬酸的石墨烯量子点的制备及其应用[J]. 应用化学, 2022, 39(6): 888-899.
Qiao-Zhi GUO, Zhen-Hua YANG, Yue-Xia ZHANG, Ya-Ting MENG, Yu-Juan CAO, Xuan-Sen SUN, Qi-Qi ZHANG, Shao-Min SHUANG, Chuan DONG. Synthesis and Applications of Graphene Quantum Dots Derived from Citric Acid[J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 888-899.
图4 基于柠檬酸的石墨烯量子点最大发射波长处发射光强与Hg(Ⅱ)浓度间关系[17]
Fig.4 Linear relation between maximum PL intensity of graphene quantum dots derived from citric acid and concentration of Hg(Ⅱ)[17]
图6 柠檬酸和氨水制备的氮掺杂量子点荧光淬灭程度与Fe(Ⅲ)浓度之间的关系[36]
Fig.6 PL spectra of nitrogen-doped graphene quantum dots derived from citric acid and ammonia with various concentrations of Fe3+ ions[36]
图7 以柠檬酸为前驱体、半胱氨酸为配体合成硫氮共掺杂石墨烯量子点的示意图[65]
Fig.7 Synthesis illustration of nitrogen, sulfur co-doped graphene quantum dots by the carbonization of citric acid with L-cysteine[65]
图8 以柠檬酸为前驱体、半胱氨酸为配体合成硫氮共掺杂石墨烯量子点的原子力显微镜图像[65]
Fig.8 TEM image of nitrogen, sulfur co-doped graphene quantum dots derived from citric acid and L-cysteine[65]
图9 以柠檬酸为前驱体、半胱氨酸为配体合成硫氮共掺杂石墨烯量子点在不同Fe(Ⅲ)浓度下的荧光强度比率[65]
Fig.9 The linear curve of the (F0-F)/F0vs Fe3+ concentrations ranging from 0.01 to 3.0 μmol/L[65]
前驱体 Precursor | 检出限 Limit of detection, LOD | 线性范围 Linear range | 检测物质 Analytes |
---|---|---|---|
柠檬酸 (Citric Acid, CA)[ | 9.87 nmol/L | 0~20 μmol/L | Hg2+ |
CA、氨水 (Ammonia)[ | 0.34 nmol/L | 0.34~1300 nmol/L | 博莱霉素 (Bleomycin, BLM) |
0.15 U/mL | 0.43~3.85 U/mL | 酪氨酸酶 (Tyrosinase, TYR) | |
0.014 mU/mL | 0.04~0.07 mU/mL | 酸性磷酸酶 (Acid Phosphatase, ACP) | |
CA、甘氨酸 (Glycine, Gly)[ | 8.3 nmol/L | 0~3 μmol/L | Hg2+ |
CA、谷氨酸 (Glutamic Acid, Glu)[ | 91 nmol/L | 0.1~100 μmol/L | Cr5+ |
0.37 fmol/L | 1.0~1×105 fmol/L | 啶虫脒 (Acetamiprid) | |
CA、尿素 (Urea)[ | 0.05 μmol/L | 0.05~0.25 μmol/L | Hg2+ |
0.5 mmol/L | 0.5~40 mmol/L | H2O2 | |
9.28×10-7 mol/L | 1.49×10-6~ 2.02×10-5 mol/L | 赖氨酸 (Lysine) | |
CA、尿素 (Urea)、硼酸 (Boric Acid)[ | 4.3 nmol/L | 0~4 μmol/L | Hg2+ |
CA、硝酸 (Nitric Acid)、 硝酸钾(Potassium Nitrate)[ | 13.19 μmol/L | 100~500 μmol/L | Cu2+ |
0.42 μmol/L | 20~100 μmol/L | Hg2+ | |
CA、缬氨酸 (Valine, Val)[ | 0.4 nmol/L | 0.8~1000 nmol/L | Hg2+ |
CA、半胱氨酸 (Cysteine, Cys)[ | 3.3 nmol/L | 0.01~3 μmol/L | Fe3+ |
0.52 μmol/L | 10~400 μmol/L | CN- | |
CA、二乙胺基二硫代甲酸钠 (Sodium Diethyldithiocarbamatre)[ | 0.8 μg/L | 1~10 μg/L | Pb2+ |
CA、青霉胺 (Penicillamine)[ | 0.69 nmol/L | 0.9~30 nmol/L | Hg2+ |
CA、亚硫酸制纸浆的残留物 (Sulfite?pulping Procedure Residue)[ | 4.7 μmol/L | 0.005~500 μmol/L | Ag+ |
CA、植酸钠 (Phytic Acid Dodecasodium from Rice)、 硫酸钠 (Sodium Sulphate)[ | 0.3 μmol/L | 0.7~9 μmol/L | NO2- |
CA、硫脲 (Thiourea)[ | 5.5 μmol/L | 5.5~66 mmol/L | 葡萄糖 (Glucose) |
1.2 μmol/L | 10~500 μmol/L | 抗坏血酸 (Ascorbic Acid) | |
0.3 pg/ml | 0.001~50 ng/mL | 心肌肌钙蛋白I (Cardiac Troponin I) | |
CA、聚吡咯 (Polypyrrole)[ | 0.022 μg/L | 0.067~233 μg/L | 对乙酰氨基酚 (Paracetamol) |
1.05 μg/L | 3.33~997.5 μg/L | 抗坏血酸 (Ascorbic Acid) | |
CA、三聚氰胺 (Melamine)[ | 20 nmol/L | 0.1~120 μmol/L | 美他环素 (Methacycline) |
CA、谷胱甘肽 (Glutathione, GSH)[ | 0.00037 U/mL | 0.001~2 U/mL | 乙酰胆碱酯酶 (Acetyl Cholinesterase) |
0.81 μmol/L | 1~1000 μmol/L | 焦磷酸根 (Pyrophosphate) | |
4.2 μmol/L | 14~170 μmol/L | 卡普利托 (Caporetto) |
表1 CA?GQDs在检测上的应用
Table 1 Applications of CA?GQDs on detecting
前驱体 Precursor | 检出限 Limit of detection, LOD | 线性范围 Linear range | 检测物质 Analytes |
---|---|---|---|
柠檬酸 (Citric Acid, CA)[ | 9.87 nmol/L | 0~20 μmol/L | Hg2+ |
CA、氨水 (Ammonia)[ | 0.34 nmol/L | 0.34~1300 nmol/L | 博莱霉素 (Bleomycin, BLM) |
0.15 U/mL | 0.43~3.85 U/mL | 酪氨酸酶 (Tyrosinase, TYR) | |
0.014 mU/mL | 0.04~0.07 mU/mL | 酸性磷酸酶 (Acid Phosphatase, ACP) | |
CA、甘氨酸 (Glycine, Gly)[ | 8.3 nmol/L | 0~3 μmol/L | Hg2+ |
CA、谷氨酸 (Glutamic Acid, Glu)[ | 91 nmol/L | 0.1~100 μmol/L | Cr5+ |
0.37 fmol/L | 1.0~1×105 fmol/L | 啶虫脒 (Acetamiprid) | |
CA、尿素 (Urea)[ | 0.05 μmol/L | 0.05~0.25 μmol/L | Hg2+ |
0.5 mmol/L | 0.5~40 mmol/L | H2O2 | |
9.28×10-7 mol/L | 1.49×10-6~ 2.02×10-5 mol/L | 赖氨酸 (Lysine) | |
CA、尿素 (Urea)、硼酸 (Boric Acid)[ | 4.3 nmol/L | 0~4 μmol/L | Hg2+ |
CA、硝酸 (Nitric Acid)、 硝酸钾(Potassium Nitrate)[ | 13.19 μmol/L | 100~500 μmol/L | Cu2+ |
0.42 μmol/L | 20~100 μmol/L | Hg2+ | |
CA、缬氨酸 (Valine, Val)[ | 0.4 nmol/L | 0.8~1000 nmol/L | Hg2+ |
CA、半胱氨酸 (Cysteine, Cys)[ | 3.3 nmol/L | 0.01~3 μmol/L | Fe3+ |
0.52 μmol/L | 10~400 μmol/L | CN- | |
CA、二乙胺基二硫代甲酸钠 (Sodium Diethyldithiocarbamatre)[ | 0.8 μg/L | 1~10 μg/L | Pb2+ |
CA、青霉胺 (Penicillamine)[ | 0.69 nmol/L | 0.9~30 nmol/L | Hg2+ |
CA、亚硫酸制纸浆的残留物 (Sulfite?pulping Procedure Residue)[ | 4.7 μmol/L | 0.005~500 μmol/L | Ag+ |
CA、植酸钠 (Phytic Acid Dodecasodium from Rice)、 硫酸钠 (Sodium Sulphate)[ | 0.3 μmol/L | 0.7~9 μmol/L | NO2- |
CA、硫脲 (Thiourea)[ | 5.5 μmol/L | 5.5~66 mmol/L | 葡萄糖 (Glucose) |
1.2 μmol/L | 10~500 μmol/L | 抗坏血酸 (Ascorbic Acid) | |
0.3 pg/ml | 0.001~50 ng/mL | 心肌肌钙蛋白I (Cardiac Troponin I) | |
CA、聚吡咯 (Polypyrrole)[ | 0.022 μg/L | 0.067~233 μg/L | 对乙酰氨基酚 (Paracetamol) |
1.05 μg/L | 3.33~997.5 μg/L | 抗坏血酸 (Ascorbic Acid) | |
CA、三聚氰胺 (Melamine)[ | 20 nmol/L | 0.1~120 μmol/L | 美他环素 (Methacycline) |
CA、谷胱甘肽 (Glutathione, GSH)[ | 0.00037 U/mL | 0.001~2 U/mL | 乙酰胆碱酯酶 (Acetyl Cholinesterase) |
0.81 μmol/L | 1~1000 μmol/L | 焦磷酸根 (Pyrophosphate) | |
4.2 μmol/L | 14~170 μmol/L | 卡普利托 (Caporetto) |
1 | LI L L, WU G H, YANG G H, et al. Focusing on luminescent graphene quantum dots: current status and future perspectives[J]. Nanoscale, 2013, 5(10): 4015-4039. |
2 | 曹芷源, 孙慧, 苏彬. 量子点电化学发光研究进展及展望[J]. 高等学校化学学报, 2020, 41(9): 1945-1955. |
CAO Z Y, SUN H, SU B. Electrochemiluminescence of quantum dots:research progress and future perspectives[J]. Chem J Chinese Univ, 2020, 41(9): 1945-1955. | |
3 | ZHOU X, GAO X, SONG F, et al. A sensing approach for dopamine determination by boronic acid-functionalized molecularly imprinted graphene quantum dots composite[J]. Appl Surf Sci, 2017, 423(6): 810-816. |
4 | PEDRERO M, CAMPUZANO S, PINGARRÓN J M. Electrochemical (bio) sensing of clinical markers using quantum dots[J]. Electroanalysis, 2017, 29(1): 24-37. |
5 | WANG Y, LI X, SONG J, et al. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics[J]. Adv Mater, 2016, 47(44): 7101-7108. |
6 | HARDMAN R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors[J]. Environ Health Perspect, 2006, 114(2): 165-172. |
7 | ZHENG X T, ANANTHANARAYANAN A, LUO K Q, et al. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications[J]. Small, 2015, 11(14): 1620-1636. |
8 | SUN H, WU L, WEI W, et al. Recent advances in graphene quantum dots for sensing[J]. Mater Today, 2013, 16(11): 433-442. |
9 | LI X, RUI M, SONG J, et al. Carbon and graphene quantum dots for optoelectronic and energy devices: a review[J]. Adv Funct Mater, 2015, 25(31): 4929-4947. |
10 | WANG R, LU K Q, TANG Z R, et al. Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis[J]. J Mater Chem, 2017, 5(8): 3717-3734. |
11 | GAO X, DU C, ZHUANG Z, et al. Carbon quantum dot-based nanoprobes for metal ion detection[J]. J Mater Chem, 2016, 4(29): 6927-6945. |
12 | 郑梅琼, 聂彤, 许炜璇, 等. 石墨烯量子点在生物传感器中的应用研究进展[J]. 化学与生物工程, 2020, 37(10): 7-10, 26. |
ZHENG M Q, NIE T, XU W X, et al. Application of graphene quantum dots in biosensors[J]. Chem Bioeng, 2020, 37(10): 7-10, 26. | |
13 | XU X Y, RAY R, GU Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. J Am Chem Soc, 2015, 126(40): 12736-12737. |
14 | 王林鹏, 马玉洁, 周学华, 等. 碳点的制备与应用研究进展[J]. 材料工程, 2015, 43(5): 101-112. |
WANG L P, MA Y J, ZHOU X H, et al. Progress in research on preparation and application of carbon dots[J]. J Mater Eng, 2015, 43(5): 101-112. | |
15 | DONG Y Q, SHAO J W, CHEN C Q, et al. Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid[J]. Carbon, 2012, 50(12): 4738-4743. |
16 | MORE M P, LOHAR P H, PATIL A G, et al. Controlled synthesis of blue luminescent graphene quantum dots from carbonized citric acid: assessment of methodology, stability, and fluorescence in an aqueous environment[J]. Mater Chem Phys, 2018, 220(8): 11-22. |
17 | KAPPEN J, ARAVIND M K, VARALAKSHMI P, et al. Hydroxyl rich graphene quantum dots for the determination of Hg(Ⅱ) in the presence large concentration of major interferents and in living cells[J]. Microchem J, 2020, 157: 104915. |
18 | AMJADI M, SHOKRI R, HALLAJ T. A new turn-off fluorescence probe based on graphene quantum dots for detection of Au(Ⅲ) ion[J]. Spectrochim Acta Part A, 2015, 153(14): 619. |
19 | SEFIDAN S B, ESKANDARI H, SHAMKHALI A N. Rapid colorimetric flow injection sensing of hypochlorite by functionalized graphene quantum dots[J]. Sens Actuators B, 2018, 275(8): 339-349. |
20 | WANG H Q, WU X X, DONG W L, et al. One-step preparation of single-layered graphene quantum dots for the detection of Fe3+[J]. Spectrochim Acta Part A, 2020, 226: 117626. |
21 | WANG Q, LI L, WU T, et al. A graphene quantum dots-Pb2+ based fluorescent switch for selective and sensitive determination of D-penicillamine[J]. Spectrochim Acta Part A, 2019, 229: 117924. |
22 | WENG S, LIANG D, QIU H, et al. A unique turn-off fluorescent strategy for sensing dopamine based on formed polydopamine (pDA) using graphene quantum dots (GQDs) as fluorescent probe[J]. Sens Actuators B, 2015, 221(6): 7-14. |
23 | LIU H, LI N, ZHANG H, et al. A simple and convenient fluorescent strategy for the highly sensitive detection of dopamine and ascorbic acid based on graphene quantum dots[J]. Talanta, 2018, 189(5): 190-195. |
24 | SAFAVI A, MALEKI N, MORADLOU O, et al. Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode[J]. Anal Biochem, 2006, 359(2): 224-229. |
25 | MAJID M F, FAEZEH A. Design and photophysical insights on graphene quantum dots for use as nanosensor in differentiating methamphetamine and morphine in solution[J]. Spectrochim Acta Part A, 2019, 206(8): 448-453. |
26 | KHOUBNASABJAFARI M, SAMADI A, JOUYBAN A. Graphene quantum dot-stabilized gold nanoparticles as a new colorimetric probe for in situ quantification of phenytoin in biological samples[J]. Microchem J, 2020, 159: 105331. |
27 | ALIZADEH T, SHOKRI M. A new humidity sensor based upon graphene quantum dots prepared via carbonization of citric acid[J]. Sens Actuators B, 2016, 222(8): 728-734. |
28 | HEIDARI-MALENI A, GUNDOSHMIAN T M, JAHANBAKHSHI A, et al. Performance improvement and exhaust emissions reduction in diesel engine through the use of graphene quantum dot (GQD) nanoparticles and ethanol-biodiesel blends[J]. Fuel, 2020, 267: 117116. |
29 | LIN Y Q, SHEN Q, KAWABATA Y, et al. Graphene quantum dots (GQDs)-assembled membranes with intrinsic functionalized nanochannels for high-performance nanofiltration[J]. Chem Eng J, 2020, 420(29): 127602. |
30 | 文丰, 王芸, 胡晓熙, 等. 石墨烯量子点的制备方法及应用进展[J]. 化工技术与开发, 2018, 47(1): 25-30, 34. |
WEN F, WANG Y, HU X X, et al. Synthesis and applications of graphene quantum dot[J]. Technol Dev Chem Ind, 2018, 47(1): 25-30, 34. | |
31 | 李碧桐. 柠檬酸热解法制备石墨烯量子点及其光学性能研究[D]. 云南大学, 2015. |
LI B T. Study on fabrication and optical properties of graphene quantum dots by citric acid pyrolysis method[D]. Yunnan University, 2015. | |
32 | 陈慧. 石墨烯量子点的制备及其荧光性能的研究[D]. 北京: 北京交通大学, 2015. |
CHEN H. Synthesis of graphene quantum dots and the study of their fluorescence property[D]. Beijing: Beijing Jiaotong University, 2015. | |
33 | 陈越. 石墨烯量子点的合成、官能化及其荧光性能的研究[D]. 北京: 北京交通大学, 2018. |
CHEN Y. Study of synthesis, functionalization and fluorescence performance of graphene quantum dots[D]. Beijing: Beijing Jiaotong University, 2018. | |
34 | ZHU Y, YAN L, XU M, et al. Difference between ammonia and urea on nitrogen doping of graphene quantum dots[J]. Colloids Surf A, 2020, 610: 125703. |
35 | GU S Y, HSIEHC T, MALLICK B C, et al. Non-enzymatic electrochemical detection of hydrogen peroxide on highly amidized graphene quantum dot electrodes[J]. Appl Surf Sci, 2020, 528: 146936. |
36 | TAM T V, TRUNG N B, KIM H R, et al. One-pot synthesis of N-doped graphene quantum dots as a fluorescent sensing platform for Fe3+ ions detection[J]. Sens Actuators B, 2014, 202(5): 568-573. |
37 | LIU X T, NA W D, LIU Q, et al. A novel label-free fluorescent sensor for highly sensitive detection of bleomycin based on nitrogen-doped graphene quantum dots[J]. Anal Chim Acta, 2018, 1028(4): 45-49. |
38 | QU Z Y, NA W D, LIU X T, et al. A novel fluorescence biosensor for sensitivity detection of tyrosinase and acid phosphatase based on nitrogen-doped graphene quantum dots[J]. Anal Chim Acta, 2018, 997(10): 52-59. |
39 | QU D, ZHENG M, DU P. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts[J]. Nanoscale, 2013, 5(24): 12272-12277. |
40 | FU C C, HSIEH C T, JUANG R S, et al. Electrochemical sensing of mercury ions in electrolyte solutions by nitrogen-doped graphene quantum dot electrodes at ultralow concentrations[J]. J Mol Liq, 2020, 302: 112593. |
41 | CHENG R M, YU C L, ZHEN Z G, et al. Understanding the selective-sensing mechanism of lysine by fluorescent nanosensors based on graphene quantum dots[J]. Spectrochim Acta Part A, 2020, 242: 118732. |
42 | LIU Z Y, MO Z L, LIU N J, et al. One-pot synthesis of highly fluorescent boron and nitrogen co-doped graphene quantum dots for the highly sensitive and selective detection of mercury ions in aqueous media[J]. J Photochem Photobiol A, 2020, 389: 112255. |
43 | GU S Y, HSIEH C T, MALLICK B C, et al. Infrared-assisted synthesis of highly amidized graphene quantum dots as metal-free electrochemical catalysts[J]. Electrochim Acta, 2020, 360: 137009. |
44 | KHODADADEI F, SAFARIAN S, GHANBARI N. Methotrexate-loaded nitrogen-doped graphene quantum dots nanocarriers as an efficient anticancer drug delivery system[J]. Polym Mater Sci Eng, 2017, 79(5): 280-285. |
45 | POURHASHEM S, GHASEMY E, RASHIDI A, et al. Corrosion protection properties of novel epoxy nanocomposite coatings containing silane functionalized graphene quantum dots[J]. J Alloys Compd, 2018, 731(10): 1112-1118. |
46 | ZHU Q Q, MAO H C, LI J J, et al. A glycine-functionalized graphene quantum dots synthesized by a facile post-modification strategy for a sensitive and selective fluorescence sensor of mercury ions[J]. Spectrochim Acta Part A, 2020, 247: 119090. |
47 | SHENG L Y, HUANGFU B H, XU Q H, et al. A highly selective and sensitive fluorescent probe for detecting Cr(VI) and cell imaging based on nitrogen-doped graphene quantum dots[J]. J Alloys Compd, 2020, 820: 153191. |
48 | CHU H X, HU J, LI Z J, et al. Electrochemical aptasensor for detection of acetamiprid in vegetables with graphene aerogel-glutamic acid functionalized graphene quantum dot/gold nanostars as redox probe with catalyst[J]. Sens Actuators B, 2019, 298: 126866. |
49 | ZHOU X Y, LI Z Y, LI Z J. Fabrication of valine-functionalized graphene quantum dots and its use as a novel optical probe for sensitive and selective detection of Hg2+[J]. Spectrochim Acta Part A, 2017, 171(8): 415-424. |
50 | KASHANI H M, MADRAKIAN T, AFKHAMI A, et al. Bottom-up and green-synthesis route of amino functionalized graphene quantum dot as a novel biocompatible and label-free fluorescence probe for in vitro cellular imaging of human ACHN cell lines[J]. Polym Mater Sci Eng, 2019, 251: 114452. |
51 | WU C P, XIE Q L, HONG Z, et al. Thin-film nanocomposite nanofiltration membrane with enhanced desalination and antifouling performance via incorporating L-aspartic acid functionalized graphene quantum dots[J]. Desalination, 2021, 498: 114811. |
52 | PANG Y Q, GAO H, LAI L H, et al. Facile synthesis of the nitrogen-doped graphene quantum dots at low temperature for cellular labeling[J]. Mater Res Bull, 2018, 104(3): 83-86. |
53 | KAEWPROM C, AREEROB Y, OH W C, et al. Simultaneous determination of Hg(Ⅱ) and Cu(Ⅱ) in water samples using fluorescence quenching sensor of N-doped and N,K co-doped graphene quantum dots[J]. Arab J Chem, 2020, 13(2): 3714-3723. |
54 | ZHOU C Q, HE X X, YA D M, et al. One step hydrothermal synthesis of nitrogen-doped graphitic quantum dots as a fluorescent sensing strategy for highly sensitive detection of metacycline in mice plasma[J]. Sens Actuators B, 2017, 249(4): 256-264. |
55 | WANGX, LI R Y, LI Z J, et al. Synthesis of dodecylamine-functionalized graphene quantum dots and their application as stabilizers in an emulsion polymerization of styrene[J]. J Colloid Interface Sci, 2017, 505(6): 847-857. |
56 | LIU X T, NA W D, LIU H, et al. Fluorescence turn-off-on probe based on polypyrrole/graphene quantum composites for selective and sensitive detection of paracetamol and ascorbic acid[J]. Biosens Bioelectron, 2017, 98(6): 222-226. |
57 | SENEL B, DEMIR N, BÜYÜKKÖROĞLU G, et al. Graphene quantum dots: synthesis, characterization, cell viability, genotoxicity for biomedical applications[J]. Saudi Pharm J, 2019, 27(6): 846-858. |
58 | MAJID M F, FATEMEH G, NAZANIN M. Boric acid modified S and N co-doped graphene quantum dots as simple and inexpensive turn-on fluorescent nanosensor for quantification of glucose[J]. Spectrochim Acta Part A, 2021, 245: 118892. |
59 | FAN D W, BAO C Z, KHAN M S, et al. A novel label-free photoelectrochemical sensor based on N,S-GQDs and CdS co-sensitized hierarchical Zn2SnO4 cube for detection of cardiac troponin I[J]. Biosens Bioelectron, 2018, 106(1): 14-20. |
60 | HOSSEIN S H, OMID A, MOHAMMAD H, et al. S,N co-doped graphene quantum dots-induced ascorbic acid fluorescent sensor: design, characterization and performance[J]. Food Chem, 2019, 295(5): 530-536. |
61 | QU Z Y, NA W D, NIE Y X, et al. A novel fluorimetric sensing strategy for highly sensitive detection of phytic acid and hydrogen peroxide[J]. Anal Chim Acta, 2018, 1039(7): 74-81. |
62 | LIU Z E, XIAO J C, WU X W, et al. Switch-on fluorescent strategy based on N and S co-doped graphene quantum dots (N-S/GQDs) for monitoring pyrophosphate ions in synovial fluid of arthritis patients[J]. Sens Actuators A, 2016, 229(1): 217-224. |
63 | TOLOZA C A T, KHAN S, SILVA R L D, et al. Different approaches for sensing captopril based on functionalized graphene quantum dots as photoluminescent probe[J]. J Lumin, 2016, 179(6): 83-92. |
64 | DENG J J, LU D K, ZHANG X L, et al. Highly sensitive GQDs-MnO2 based assay with turn-on fluorescence for monitoring cerebrospinal acetylcholinesterase fluctuation: a biomarker for organophosphorus pesticides poisoning and management[J]. Environ Pollut, 2017, 224(2): 436-444. |
65 | XIA C, HAI X, CHEN X W, et al. Simultaneously fabrication of free and solidified N,S-doped graphene quantum dots via a facile solvent-free synthesis route for fluorescent detection[J]. Talanta, 2017, 168(3): 269-278. |
66 | MONDAL M K, MUKHERJEE S, JOARDAR N, et al. Synthesis of smart graphene quantum dots: a benign biomaterial for prominent intracellular imaging and improvement of drug efficacy[J]. Appl Surf Sci, 2019, 495: 143562. |
67 | CHEN C X, ZHAO D, HU T, et al. Highly fluorescent nitrogen and sulfur co-doped graphene quantum dots for an inner filter effect-based cyanide sensor[J]. Sens Actuators B, 2017, 241(11): 779-788. |
68 | CHAYANEE K, PHITCHAN S, NUNTICHA L, et al. Resonance light scattering sensor of the metal complex nanoparticles using diethyl dithiocarbamate doped graphene quantum dots for highly Pb(Ⅱ)-sensitive detection in water sample[J]. Spectrochim Acta Part A, 2019, 207(9): 79-87. |
69 | QU C J, ZHANG D B, YANG R, et al. Nitrogen and sulfur co-doped graphene quantum dots for the highly sensitive and selective detection of mercury ion in living cells[J]. Spectrochim Acta Part A, 2019, 206(7): 588-596. |
70 | WANG W J, XU S F, LI N, et al. Sulfur and phosphorus co-doped graphene quantum dots for fluorescent monitoring of nitrite in pickles[J]. Spectrochim Acta Part A, 2019, 221: 117211. |
71 | XU L N, YANG X H, DING H Y, et al. Synthesis of green fluorescent carbon materials using byproducts of the sulfite-pulping procedure residue for live cell imaging and Ag+ ion determination[J]. Polym Mater Sci Eng, 2019, 102(4): 917-922. |
72 | ROUSHANI M, GHANBARZADEH M, SHAHDOST-FARD F, et al. AgNPs/QDs@GQDs nanocomposites developed as an ultrasensitive impedimetric aptasensor for ractopamine detection[J]. Polym Mater Sci Eng, 2020, 108: 110507. |
73 | SEKAR K, RAJI G, TONG L Y, et al. Boosting the electrochemical performance of MoS2 nanospheres-N-doped-GQDs-rGO three-dimensional nanostructure for energy storage and conversion applications[J]. Appl Surf Sci, 2020, 504: 144441. |
[1] | 杨振华, 孙宣森, 张月霞, 曹宇娟, 张琪琦, 郭峤志, 范小鹏, 李忠平, 董川. 氮硫共掺杂碳点的制备及其对牛奶中土霉素的检测[J]. 应用化学, 2022, 39(9): 1382-1390. |
[2] | 王文栋, 李在均. 钌-石墨烯量子点人工酶合成及用于胡萝卜中辛硫磷的光度检测[J]. 应用化学, 2022, 39(8): 1285-1293. |
[3] | 徐丽萍, 刘清士, 董芷辰, 郭兴家, 董微. 基于氮掺杂碳点的荧光增强简便、快速而准确地检测环丙沙星[J]. 应用化学, 2020, 37(7): 830-838. |
[4] | 张天永, 任忠静, 李彬, 姜爽, 史继星, 石志强, 吕东军. C.I.颜料红177中间体的制备工艺改进[J]. 应用化学, 2020, 37(4): 433-439. |
[5] | 弓辉, 康玉, 张荣, 任国栋, 侯笑雨, 张敏, 李丽红, 刘文, 王浩江, 刁海鹏. 氮掺杂碳点的制备及其对阿莫西林高灵敏检测[J]. 应用化学, 2020, 37(2): 227-234. |
[6] | 张鑫宇, 曲江英, 汤占磊, 李杰兰, 高峰. 原位氮掺杂碳包覆CoxP复合物的制备及其锂电性能[J]. 应用化学, 2020, 37(10): 1172-1180. |
[7] | 黄继梅, 孟瑞晋, 杨金虎. 硫掺杂二氧化钛/碳化钛复合材料的制备及储锂性能[J]. 应用化学, 2018, 35(8): 925-931. |
[8] | 黄继梅, 孟瑞晋, 杨金虎. 硫掺杂二氧化钛/碳化钛复合材料的制备及储锂性能[J]. 应用化学, 2018, 35(8): 0-0. |
[9] | 刘小芳,王胜男,许健,李冉. 简易法制备高量子产率荧光材料及其应用[J]. 应用化学, 2018, 35(6): 674-678. |
[10] | 冷爽, 王韬, 杨敏, 赵彦芝, 陆伟, 王若明, 孙国英. 基于聚多巴胺的氮掺杂碳材料的制备及其电化学性能[J]. 应用化学, 2018, 35(4): 477-483. |
[11] | 苏香香,杨蓉,李兰,李润秋,王黎晴,雷颖. 氮掺杂石墨烯的制备及其在化学储能中的研究进展[J]. 应用化学, 2018, 35(2): 137-146. |
[12] | 任振波, 应宗荣, 刘信东, 万慧. 蒙脱土基氮掺杂多孔碳@聚苯胺复合材料的制备及电化学性能[J]. 应用化学, 2016, 33(12): 1448-1454. |
[13] | 马诗瑶, 杜慧, 耿闯, 王扬, 庞琳瀚, 赵娜, 刘筱, 郭永泰, 曲江英. 蟹壳基氮/氧共掺杂多孔炭的原位制备及其超级电容器性能[J]. 应用化学, 2016, 33(11): 1316-1321. |
[14] | 李燕, 王国旺, 王宁. 改性层状双氢氧化物对铜离子(Ⅱ)和双酚A的协同吸附[J]. 应用化学, 2015, 32(7): 816-824. |
[15] | 高艳芳, 王海水. 柠檬酸钠与碳酸钙晶型和形貌的控制[J]. 应用化学, 2015, 32(7): 831-836. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||