1 |
JORDENS A, CHENG Y P, WATERS K E. A review of the beneficiation of rare earth element bearing minerals[J]. Miner Eng, 2013, 41: 97-114.
|
2 |
王国珍. 我国稀土采选冶炼环境污染及对减少污染的建议[J]. 四川稀土, 2006(3): 2-8.
|
|
WANG G Z. Environmental pollution of rare earth mining, dressing and smelting in my country and suggestions for reducing pollution[J]. Sichuan Rare Earth, 2006(3): 2-8.
|
3 |
郑仙荣, 钟可祥, 张榕贵, 等. 一种PET用低钍、低铀氧化镥的制备方法: 中国, 201910768390.X[P]. 2020-05-01.
|
|
ZHENG X R, ZHONG K X, ZHANG R G, et al. Preparation method of low-thorium low-uranium lutetium oxide for positron emission computed tomography(PET)∶CN, 201910768390.X[P]. 2020-05-01.
|
4 |
KUANG S T, LIAO W P. Progress in the extraction and separation of rare earths and related metals with novel extractants: a review[J]. Sci China Technol Sc, 2018, 61(9): 1319-1328.
|
5 |
SEN Q, SHUN L, DONG Y M, et al. A high-performance impregnated resin for recovering thorium from radioactive rare earth waste residue[J]. J Mol Liq, 2017, 237: 380-386.
|
6 |
HU Y M, GIRET S, MEINUSCH R, et al. Selective separation and preconcentration of Th(Ⅳ) using organo-functionalized hierarchically porous silica monoliths[J]. J Mater Chem A, 2019, 7(1): 289-302.
|
7 |
EI AFIFI E, BORAI E, EI-DIN A. New approaches for efficient removal of some radionuclides and iron from rare earth liquor of monazite processing[J]. Int J Environ Sci Technol, 2019, 16(12): 7735-7746.
|
8 |
陆柱, 游錦鮮, 苏元复. 钍的萃取化学(I)-Th (NO3)4-HNO3-H2O-TBP-煤油系統第三相的形成[J]. 原子能科学技术, 1964(6): 656-661.
|
|
LU Z, YOU J X, SU Y F. Extraction chemistry of thorium(I)-Th (NO3)4-HNO3-H2O-TBP-kerosene system third phase formation [J]. At Energg Sci Technol, 1964(6): 656-661.
|
9 |
李德谦, 陆军, 魏正贵, 等. 一种从氟碳铈矿浸出液中萃取分离铈、钍的工艺: 中国, ZL981222348.6[P]. 2000-05-24.
|
|
LI D Q, LU J, WEI Z G, et al. A process for extractiong and separating cerium and thorium from bastnaesite leaching solution: CN, ZL981222348.6[P]. 2000-05-24.
|
10 |
WANG Y L, HUANG C, LI F J, et al. Process for the separation of thorium and rare earth elements from radioactive waste residues us Cyanex®572 as a new extractant[J]. Hydrometallurgy, 2017, 169: 158-164.
|
11 |
廖伍平, 李艳玲, 张志峰, 等. 含氨基中性膦萃取剂用于萃取分离钍的用途和方法: 中国, CN201410765062.1[P]. 2016-07-06.
|
|
LIAO W P, LI Y L, ZHANG Z F, et al. Use and method for extracting and separating thorium with amino-containing neutral phosphine extractant: CN, 201410765062.1[P]. 2016-07-06.
|
12 |
YANG X J, ZhANG Z F, KUANG S T, et al. Removal of thorium and uranium from leach solutions of ion-adsorption rare earth ores by solvent extraction with Cextrant 230[J]. Hydrometallurgy, 2020, 194: 105343.
|
13 |
LOPEZ-MONTILLA J C, PANDEY S, SHAH D O, et al. Removal of non-ionic organic pollutants from water via liquid-liquid extraction[J]. Water Res, 2005, 39(9): 1907-1913.
|
14 |
XIA C B, YANG Y Z, XIN X M, et al. Extraction of rare earth metal samarium by microemulsion[J]. J. Radioanal Nucl Chem, 2008, 275(3): 535-540.
|
15 |
ZENG S, YANG Y Z, ZHU T, et al. Uranium(VI) extraction by Winsor II microemulsion systems using trialkyl phosphine oxide[J]. J Radioanal Nucl Chem, 2005, 265(3): 419-421.
|
16 |
SHANG K, YANG Y Z, GUO J X, et al. Extraction of cobalt by the AOT microemulsion system[J]. J Radioanal Nucl Chem, 2012, 291(3): 629-633.
|
17 |
程建忠, 侯运炳, 车丽萍. 从稀土浸出液萃钍萃稀土后的废水中回收钍的试验研究[J]. 稀土, 2008, 29(2): 76-77, 94.
|
|
CHENG J Z, HOU Y B, CHE L P. Recovery of Th from RE industrial wastewater of the dip solution of RE after extraction RE and Th[J]. Chinese Rare Earths, 2008, 29(2): 76-77, 94.
|
18 |
GAO S, SHEN X H, CHEN Q D, et al. Solvent extraction of thorium(IV) using W/O microemulsion[J]. Sci China Chem, 2012, 55(9): 1712-1718.
|
19 |
李玉萍, 李莉芬, 王献科. 液膜分离富集、测定水中痕量钍[J]. 工业水处理, 2000, 20(11): 28-30,35.
|
|
LI Y P, LI L F, WANG X K. Separation enrichment and determination of trace thorium in water with liquid membrane[J]. Ind Water Treatment, 2000, 20(11): 28-30,35.
|
20 |
NAGANAWA H, SUZUKI H,YANASE N, et al. Reversed-micellar extraction of strontium(Ⅱ) from model solutions of seawater[J]. Anal Sci, 2011, 27(3): 321-324.
|
21 |
OSSEOASARE K. Aggregation, reversed micelles, and microemulsions in liquid-liquid extraction: the tri-n-butyl phosphate-diluent-water-electrolyte system[J]. Adv Colloid Interf Sci, 1991, 37(1/2): 123-173.
|
22 |
ERLINGER C, BELLONI L, ZEMB T, et al. Attractive interactions between reverse aggregates and phase separation in concentrated malonamide exractant solution[J]. Langmuir, 1999, 15(7): 2290-2300.
|
23 |
UEDA M, SCHELLY Z A. Mean arrogation number and water-vapor pressure of AOT reverse micellar systems determined by controlled partial-pressure vapor-pressure osmometry (CPP-VPO)[J]. Langmuir, 1988, 4(3): 653-655.
|
24 |
ANTONIO M R, ELLIS R J, ESTES S L, et al. Structural insights into the multinuclear speciation of tetravalent cerium in the tri-n-butyl phosphate-n-dodecane solvent extraction system[J]. Phys Chem Chem Phys, 2017, 19(32): 21304-21316.
|
25 |
BAUER C, BAUDIUM P, DUFRECHE J F, et al. Liquid/liquid metal extraction: phase diagram topology resulting from molecular interaction between extractant, ion, oil and water[J]. Eur Phys J Spec Top, 2012, 213(1): 225-241.
|
26 |
IBRAHIM T H,NEUMAN R D.Molecular modeling study of the aggregation behavior of nickel(II), cobalt(II), lead(II) and zinc(II) bis(2-ethylhexyl) phosphate complexes[J]. J Colloid Interf Sci, 2006, 294(2):321-327.
|
27 |
贾颖萍, 吴洪林, 裴婕. 反胶团体系中含水比W0的研究[J]. 大连大学学报, 2000(4): 45-47.
|
|
JIA Y P, WU H L, PEI J. Research on the water content of reverse micelle system[J]. J Dailian Univ, 2000(4): 45-47.
|
28 |
LU Y C, ZHANG Z F, LI Y L, et al. Extraction and recovery of cerium(IV) and thorium(IV) from sulphate medium by an α-aminophosphonate extractant[J]. J Rare Earths, 2017, 35(1): 34-40..
|
29 |
LU J, WEI Z G, LI D Q, et al. Recovery of Ce(Ⅳ) and Th(Ⅵ) from rare earths(Ⅲ) with Cyanex 923[J]. Hydrometallurgy, 1998, 50(1): 77-87.
|