应用化学 ›› 2022, Vol. 39 ›› Issue (10): 1488-1500.DOI: 10.19894/j.issn.1000-0518.210573
收稿日期:
2021-12-21
接受日期:
2022-04-20
出版日期:
2022-10-01
发布日期:
2022-10-05
通讯作者:
黄明华
基金资助:
Dan WANG, Xian-Biao HOU, Xing-Kun WANG, Zhi-Cheng LIU, Huan-Lei WANG, Ming-Hua HUANG()
Received:
2021-12-21
Accepted:
2022-04-20
Published:
2022-10-01
Online:
2022-10-05
Contact:
Ming-Hua HUANG
About author:
huangminghua@ouc.edu.cnSupported by:
摘要:
锌空气电池是新一代先进能量转换和存储设备中极具潜力的候选者之一,其阴极氧催化剂的活性高低和寿命长短是制约锌空气电池发展的关键因素,因此亟需开发高效稳定的阴极氧电催化剂以提高锌空气电池的性能。近年来,碳包覆型铁基纳米颗粒催化剂有效抑制了苛刻环境下颗粒的腐蚀、氧化以及团聚失活,展示出优异的氧催化性能,已经被广泛用作锌空气电池阴极材料。本文对碳包覆过渡金属铁基材料在锌空气电池阴极电催化剂中的应用进行了综述。首先,介绍了锌空气电池的基本工作原理,重点讨论了碳包覆过渡金属Fe及合金、碳化物、氧化物和磷化物纳米颗粒等阴极催化剂的研究进展,最后,对碳包覆铁基电催化剂应用于锌空气电池中的发展前景进行了总结和展望。
中图分类号:
王丹, 侯现飚, 汪兴坤, 刘志承, 王焕磊, 黄明华. 应用于锌空气电池的碳包覆铁基纳米颗粒电催化剂研究进展[J]. 应用化学, 2022, 39(10): 1488-1500.
Dan WANG, Xian-Biao HOU, Xing-Kun WANG, Zhi-Cheng LIU, Huan-Lei WANG, Ming-Hua HUANG. Research Progress of Carbon‑Encapsulated Iron‑Based Nanoparticles Electrocatalysts for Zinc‑Air Batteries[J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1488-1500.
图2 (a) HPCM-5催化剂的合成示意图[22]; (b) HPCM-5和Pt/C催化剂在O2饱和的0.1 mol/L KOH电解液中的ORR极化曲线[22]; (c) HPCM-5和Pt/C催化剂在0.5 V电压下的计时电流曲线[22]; (d) 作为空气阴极组装的锌空气电池的放电极化曲线和相应的功率密度[22]; (e) 在恒电流密度为10和50 mA/cm2时, HPCM-5催化剂组装锌空气电池的长期放电曲线[22];(f) CoFe@NC/CC催化剂的合成示意图[23]
Fig.2 (a) Schematic illustration for the synthesis of HPCM-5[22]; (b) ORR polarization curves of HPCM-5 and Pt/C in O2 saturated 0.1 mol/L KOH electrolyte[22]; (c) Chronoamperometric curves for HPCM-5 and Pt/C at 0.5 V[22]; (d) Discharge polarization curves and corresponding power density of the zinc air batteries assembled as cathodes by HPCM-5 and Pt/C[22]; (e) Long-term discharge curves of zinc air battery based on HPCM-5 at a current density of 10 and 50 mA/cm2[22]; (f) Schematic illustration for the synthesis of CoFe@NC/CC[23]
图3 (a) FeNi@NCNT-CP催化剂的合成示意图[24]; (b) 分别以FeNi@NCNT-CP、Pt/C和IrO2组装锌空气电池的放电极化和相应的功率密度曲线[24]; (c) NiCoFe@N-CNFs催化剂的合成示意图[25]; (d) NPC/FeCo@NCNT催化剂的合成示意图[26]; (e)在10 mA/cm2时,分别以NPC/FeCo@NCNT和Pt/C催化剂组装的锌空气电池的恒电流充放电循环曲线[26]
Fig.3 (a) Schematic illustration for preparation of FeNi@NCNT-CP[24]; (b) Discharge polarization and power density curves of zinc air battery based on FeNi@NCNT-CP, Pt/C and IrO2, respectively[24]; (c) Schematic illustration for preparation of NiCoFe@N-CNFs[25]; (d) Schematic illustration for preparation of NPC/FeCo@NCNT[26]; (e) Galvanostatic charge-discharge cycling curves of zinc air battery assembled by NPC/FeCo@NCNT and Pt/C+RuO2 at 10 mA/cm2, respectively[26]
图4 (a) Fe@C-NG/NCNTs催化剂的合成示意图[27]; (b) D-BNGFe催化剂的合成示意图[28]; (c) D-BNGFe-2-900和商业Pt/C催化剂的ORR极化曲线[28];(d) 分别以D-BNGFe-2-900//NiFe-LDH@CF和Pt/C+RuO2组装的锌空气电池在10 mA/cm2的恒电流充放电曲线(每个循环40 min)[28]; (e) Fe7C3@FeNC催化剂的合成示意图[31]
Fig.4 (a) Schematic illustration of the synthesis procedure for Fe@C-NG/NCNTs[27]; (b) Schematic illustration of the synthesis procedure for D-BNGFe-2-900[28]; (c) ORR polarization curves of D-BNGFe-2-900 and Pt/C[28]; (d) Galvanostatic charge-discharge cycling curves of zinc air batteries based on D-BNGFe-2-900∥NiFe-LDH@CF and Pt/C+RuO2 (40 min for one cycle) at 10 mA/cm2, respectively[28]; (e) Schematic illustration of the synthesis procedure for Fe7C3@FeNC[31]
图5 (a) Fe3O4@PCN催化剂的合成示意图[34]; (b) Fe x @N/HCSs催化剂的合成示意图[36]; (c) Fe3C/Fe2O3@NGNs催化剂的合成示意图[37]; 以Fe3C/Fe2O3@NGNs和 Pt/C+IrO2催化剂组装的锌空气电池的性能: (d)在电流密度为20 mA/cm2时的比容量[37]; (e) 锌空气电池的放电极化曲线及相应的功率密度图[37]; (f) FeO x @N-PHCS催化剂的合成示意图[38]
Fig.5 (a) Schematic illustration of the fabricated process of Fe3O4@PCN[34]; (b) Schematic illustration of the fabricated process of Fe x @N/HCSs[36];(c) Schematic illustration of the fabricated process of Fe3C/Fe2O3@NGNs[37]; The zinc air batteries performances with Fe3C/Fe2O3@NGNs and Pt/C+IrO2; (d) Specific capacity at current density of 20 mA/cm2[37]; (e) Discharge polarization and power density curves[37]; (f) Schematic illustration of the fabricated process of FeO x @N-PHCS[38]
图6 (a) Fe2P/FeP-PNC催化剂的合成示意图[42]; (b) Fe2P/FeP-PNC催化剂在0.1 mol/L HClO4电解质中的ORR极化曲线[42]; (c) 以Fe2P/FeP-PNC作为阴极催化剂组装的锌空气电池的放电极化和相应的功率密度曲线[42]; (d) C-ZIF/LFP催化剂的合成示意图; (e) FECNFS-NP催化剂的合成示意图[41]; (f)以FECNFS-NP为阴极催化剂的锌空气电池放电极化曲线和相应的功率密度[41]; (g) 以FECNFS-NP为阴极催化剂的锌空气电池的恒电流放电曲线[41]
Fig.6 (a) Schematic illustration for the synthesis of Fe2P/FeP-PNC[42]; (b) ORR polarization curves of Fe2P/FeP-PNC in 0.1 mol/L HClO4 electrolyte[42]; (c) Discharging polarization and corresponding power density curves with cathode catalysts of Fe2P/FeP-PNC[42]; (d) Schematic illustration for the synthesis of C-ZIF/LFP[43]; (e) Schematic illustration for the synthesis of FECNFS-NP[41]; (f) Polarization curves and corresponding power density curves of the zinc air battery with FECNFS-NP as the catalyst[41]; (g) Long-time discharge curves of the zinc air battery with FECNFS-NP as the catalyst[41]
分类 Classification | 催化剂 Catalyst | 电解液 Electrolyte | 开路电压 Open circuit voltage/V | 最大功率密度 Peak power density/ (mW·cm-2) | 循环次数 Cycle number | 参考 文献 Ref. |
---|---|---|---|---|---|---|
铁及合金纳米颗粒 Iron and ferroalloys nanoparticles | Fe@C?NG/NCNTs | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.37 | 101.2 | 297 | [ |
1.5FeNi@NCNT | 6 mol/L KOH+0.2 mol/L ZnCl2 | 1.44 | 114 | 100 | [ | |
NiCoFe@N?CNFs | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.32 | 147 | 120 | [ | |
Fe1.2Co@NC/NCNT | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.43 | 194 | 300 | [ | |
FeCo?N/C | 6 mol/L KOH | - | 89.9 | 140 | [ | |
FeNi@NCNT?CP | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.551 | 200 | 250 | [ | |
NPC/FeCo@NCNT | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.429 | 151.3 | 100 | [ | |
FeCo@NC?g | 6 mol/L KOH+0.2 mol/L ZnCl2 | 1.456 | 190.2 | 120 | [ | |
CoFe@NC?SE | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.58 | 102 | 288 | [ | |
碳化物纳米颗粒 Carbide nanoparticles | Fe/Fe3C@NCNT?750 | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | - | 198 | 500 | [ |
D?BNGFe?2?900 | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | - | 142 | 610 | [ | |
Fe?2?WNPC?NCNTs | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.43 | 101.3 | 200 | [ | |
Fe7C3@FeNC | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.41 | 66.8 | 120 | [ | |
Fe/Fe3C@Fe?Nx?C | 6 mol/L KOH | - | 147 | 200 | [ | |
氧化物纳米颗粒 Oxide nanoparticles | 4Fe3O4@PCN?800 | 6 mol/L KOH | 1.423 | 156.8 | - | [ |
FeOx@N?PHCS | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.41 | 93.6 | 25 | [ | |
Fe20@N/HCSs | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.57 | 140.8 | - | [ | |
CoCx/(Co0.55Fe1.945)2P@C | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.50 | 131 | 60 | [ | |
Fe?CNSs?N | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.27 | 106.8 | - | [ | |
C?FePPDA?900 | 6 mol/L KOH | - | 106 | - | [ | |
Fe3C/Fe2O3@NGNs | 6 mol/L KOH | 1.46 | 139.8 | - | [ | |
磷化物纳米颗粒 Phosphide nanoparticles | FeCo?P?2 | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.415 | 205 | - | [ |
C?ZIF/LFP | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.5 | 140 | - | [ | |
FeCNFs?NP | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.4 | 97 | - | [ |
表1 碳包覆型铁基催化剂应用于锌空气电池的性能对比
Table 1 Performance comparison of carbon?encapsulated iron?based catalysts applied in zinc air batteries
分类 Classification | 催化剂 Catalyst | 电解液 Electrolyte | 开路电压 Open circuit voltage/V | 最大功率密度 Peak power density/ (mW·cm-2) | 循环次数 Cycle number | 参考 文献 Ref. |
---|---|---|---|---|---|---|
铁及合金纳米颗粒 Iron and ferroalloys nanoparticles | Fe@C?NG/NCNTs | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.37 | 101.2 | 297 | [ |
1.5FeNi@NCNT | 6 mol/L KOH+0.2 mol/L ZnCl2 | 1.44 | 114 | 100 | [ | |
NiCoFe@N?CNFs | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.32 | 147 | 120 | [ | |
Fe1.2Co@NC/NCNT | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.43 | 194 | 300 | [ | |
FeCo?N/C | 6 mol/L KOH | - | 89.9 | 140 | [ | |
FeNi@NCNT?CP | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.551 | 200 | 250 | [ | |
NPC/FeCo@NCNT | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.429 | 151.3 | 100 | [ | |
FeCo@NC?g | 6 mol/L KOH+0.2 mol/L ZnCl2 | 1.456 | 190.2 | 120 | [ | |
CoFe@NC?SE | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.58 | 102 | 288 | [ | |
碳化物纳米颗粒 Carbide nanoparticles | Fe/Fe3C@NCNT?750 | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | - | 198 | 500 | [ |
D?BNGFe?2?900 | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | - | 142 | 610 | [ | |
Fe?2?WNPC?NCNTs | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.43 | 101.3 | 200 | [ | |
Fe7C3@FeNC | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.41 | 66.8 | 120 | [ | |
Fe/Fe3C@Fe?Nx?C | 6 mol/L KOH | - | 147 | 200 | [ | |
氧化物纳米颗粒 Oxide nanoparticles | 4Fe3O4@PCN?800 | 6 mol/L KOH | 1.423 | 156.8 | - | [ |
FeOx@N?PHCS | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.41 | 93.6 | 25 | [ | |
Fe20@N/HCSs | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.57 | 140.8 | - | [ | |
CoCx/(Co0.55Fe1.945)2P@C | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.50 | 131 | 60 | [ | |
Fe?CNSs?N | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.27 | 106.8 | - | [ | |
C?FePPDA?900 | 6 mol/L KOH | - | 106 | - | [ | |
Fe3C/Fe2O3@NGNs | 6 mol/L KOH | 1.46 | 139.8 | - | [ | |
磷化物纳米颗粒 Phosphide nanoparticles | FeCo?P?2 | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.415 | 205 | - | [ |
C?ZIF/LFP | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.5 | 140 | - | [ | |
FeCNFs?NP | 6 mol/L KOH+0.2 mol/L Zn(Ac)2 | 1.4 | 97 | - | [ |
1 | WANG H F, TANG C, ZHANG Q, et al. A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn-air batteries[J]. Adv Funct Mater, 2018, 28(46): 1803329. |
2 | XU R, WANG X K, ZHANG C H, et al. Engineering solid-liquid-gas interfaces of single-atom cobalt catalyst for enhancing the robust stability of neutral Zn-air batteries under high current density[J]. Chem Eng J, 2022, 433: 133685. |
3 | WANG H F, XU Q. Materials design for rechargeable metal-air batteries[J]. Matter-US, 2019, 1(3): 565-595. |
4 | ZHOU T P, ZHANG N, WU C Z, et al. Surface/interface nanoengineering for rechargeable Zn-air batteries[J]. Energy Environ Sci, 2020, 13(4): 1132-1153. |
5 | 李宫, 金龙一, 姚鹏飞, 等. 介孔炭负载铂纳米粒子的高效氧还原催化剂的可控设计[J]. 应用化学, 2021, 38(12): 1639-1646. |
LI G, JIN L Y, YAO P F, et al. Controllability design of high performance oxygen reduction catalysts supported by platinum nanoparticles loaded on mesoporous carbon[J]. Chinese J Appl Chem, 2021, 38(12): 1639-1646. | |
6 | 高国锋, 李丹丹, 郝根彦, 等. 铁基阳极析氧催化剂的研究进展与展望[J]. 应用化学, 2016, 33(5): 505-511. |
GAO G F, LI D D, HAO G Y, et al. Progress and prospect of iron based anodic oxygen evolving catalysts[J]. Chinese J Appl Chem, 2016, 33(5): 505-511. | |
7 | ZHAO C X, LIU J N, WANG J, et al. A ΔE=0.63 V bifunctional oxygen electrocatalyst enables high-rate and long‐cycling zinc-air batteries[J]. Adv Mater, 2021, 33(15): 2008606. |
8 | SUN W, WANG F, ZHANG B, et al. A rechargeable zinc-air battery based on zinc peroxide chemistry[J]. Science, 2021, 371(6524): 46-51. |
9 | YI J, LIANG P P, LIU X Y, et al. Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc air batteries[J]. Energy Environ Sci, 2018, 11(11): 3075-3095. |
10 | WANG X K, ZHAN G M, WANG Y R, et al. Engineering core-shell Co9S8/Co nanoparticles on reduced graphene oxide: efficient bifunctional mott-schottky electrocatalysts in neutral rechargeable Zn-air batteries[J]. J Energy Chem, 2022, 68: 113-123. |
11 | HUANG Y P, LIU K, KAN S T, et al. Highly dispersed Fe-Nx active sites on graphitic-N dominated porous carbon for synergetic catalysis of oxygen reduction reaction[J]. Carbon, 2021, 171: 1-9. |
12 | WANG X K, GAI H Y, CHEN Z K, et al. The marriage of crystalline/amorphous Co/Co3O4 heterostructures with N-doped hollow carbon spheres: efficient and durable catalysts for oxygen reduction[J]. Mater Today Energy, 2020, 18: 100497. |
13 | REN S S, DUAN X D, LIANG S, et al. Bifunctional electrocatalysts for Zn-air batteries: recent developments and future perspectives[J]. J Mater Chem A, 2020, 8(13): 6144-6182. |
14 | WANG D, PAN X, YANG P, et al. Transition metal and nitrogen co-doped carbon-based electrocatalysts for the oxygen reduction reaction: from active site insights to the rational design of precursors and structures[J]. ChemSusChem, 2021, 14(1): 33-55. |
15 | DENG J, DENG D H, BAO X H, et al. Robust catalysis on 2D materials encapsulating metals: concept, application, and perspective[J]. Adv Mater, 2017, 29(43): 1606967. |
16 | MENG F L, LIU K H, ZHANG Y, et al. Recent advances toward the rational design of efficient bifunctional air electrodes for rechargeable Zn-air batteries[J]. Small, 2018, 14(32): 1703843. |
17 | DU D, ZHAO S, ZHU Z, et al. Photo-excited oxygen reduction and oxygen evolution reactions enable a high-performance Zn-air battery[J]. Angew Chem Int Ed, 2020, 59(41): 18140-18144. |
18 | ZHANG H, LIU J, TIAN Z, et al. A general strategy toward transition metal carbide/carbon core/shell nanospheres and their application for supercapacitor electrode[J]. Carbon, 2016, 100: 590-599. |
19 | DENG D H, YU L, CHEN X Q, et al. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction[J]. Angew Chem Int Ed, 2013, 52(1): 371-375. |
20 | WANG J, WU H H, GAO D F, et al. High-density iron nanoparticles encapsulated within nitrogen-doped carbon nanoshell as efficient oxygen electrocatalyst for zinc-air battery[J]. Nano Energy, 2015, 13: 387-396. |
21 | DENG J, REN P J, DENG D H, et al. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction[J]. Angew Chem Int Ed, 2015, 54(7): 2100-2104. |
22 | SUN Z H, WANG Y K M, ZHANG L B, et al. Simultaneously realizing rapid electron transfer and mass transport in jellyfish‐like mott-schottky nanoreactors for oxygen reduction reaction[J]. Adv Funct Mater, 2020, 30(15): 1910482. |
23 | LIU Q, LIU X, XIE Y, et al. N-Doped carbon coating enhances the bifunctional oxygen reaction activity of CoFe nanoparticles for a highly stable Zn-air battery[J]. J Mater Chem A, 2020, 8(40): 21189-21198. |
24 | ZHENG X J, CAO X C, ZENG K, et al. A self-jet vapor-phase growth of 3D FeNi@NCNT clusters as efficient oxygen electrocatalysts for zinc air batteries[J]. Small, 2021, 17(4): 2006183. |
25 | CAO F, YANG X, SHEN C, et al. Electrospinning synthesis of transition metal alloy nanoparticles encapsulated in nitrogen-doped carbon layers as an advanced bifunctional oxygen electrode[J]. J Mater Chem A, 2020, 8(15): 7245-7252. |
26 | HAO X Q, JIANG Z Q, ZHANG B A, et al. N-doped carbon nanotubes derived from graphene oxide with embedment of FeCo nanoparticles as bifunctional air electrode for rechargeable liquid and flexible all-solid-state zinc air batteries[J]. Adv Sci, 2021, 8(10): 2004572. |
27 | WANG Q C, LEI Y P, CHEN Z Y, et al. Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene-CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn-air batteries[J]. J Mater Chem A, 2018, 6(2): 516-526. |
28 | ZHANG G, LIU X, WANG L, et al. B, N-doped defective carbon entangled Fe3C nanoparticles as the superior oxygen reduction electrocatalyst for Zn-air batteries[J]. ACS Sustain Chem Eng, 2019, 7(23): 19104-19112. |
29 | LIU Z, ZHU Y F, XIAO K K, et al. Fe/Fe3C embedded in N-doped worm-like porous carbon for highrate catalysis in rechargeable zinc-air batteries[J]. ACS Appl Mater Inter, 2021, 13(21): 24710-24722. |
30 | DI J, GUO J X, WANG N N, et al. Multicomponent doped sugar-coated haws stick-like nanofibers as efficient oxygen reduction reaction catalysts for the Zn-air battery[J]. ACS Sustain Chem Eng, 2019, 7(8): 24710-24722. |
31 | NIU Y L, TENG X, WANG J Y, et al. Space-confined strategy to Fe7C3 nanoparticles wrapped in porous Fe-/N-doped carbon nanosheets for efficient oxygen electrocatalysis[J]. ACS Sustain Chem Eng, 2019, 7(15): 13576-13583. |
32 | LIU Z, ZHU Y F, XIAO K K, et al. Fe/Fe3C embedded in N-doped worm-like porous carbon for high-rate catalysis in rechargeable zinc-air batteries[J]. ACS Appl Mater Inter 2021, 13(21): 24710-24722. |
33 | YANG J, H J T, WENG M Y, et al. Fe-cluster pushing electrons to N-doped graphitic layers with Fe3C(Fe) hybrid nanostructure to enhance O2 reduction catalysis of Zn-air batteries[J]. ACS Appl Mater Inter, 2017, 9(5): 4587-4596. |
34 | ZHANG H M, ZHAO Y, ZHANG Y J, et al. Fe3O4 encapsulated in porous carbon nanobowls as efficient oxygen reduction reaction catalyst for Zn-air batteries[J]. Chem Eng J, 2019, 375: 122058. |
35 | DENG Y J, TIAN X L, SHEN G H, et al. Coupling hollow Fe3O4 nanoparticles with oxygen vacancy on mesoporous carbon as a high-efficiency ORR electrocatalyst for Zn-air battery [J]. J Colloid Interf Sci, 2020, 567: 410-418. |
36 | WANG B, YE Y Z, XU L, et al. Space-confined yolk-shell construction of Fe3O4 nanoparticles inside N-doped hollow mesoporous carbon spheres as bifunctional electrocatalysts for long-term rechargeable zinc air batteries[J]. Adv Funct Mater, 2020, 30(51): 2005834. |
37 | TIAN Y H, XU L, QIAN J C, et al. Fe3C/Fe2O3 heterostructure embedded in N-doped graphene as a bifunctional catalyst for quasi-solid-state zinc air batteries[J]. Carbon, 2019, 146: 763-771. |
38 | HAO R, REN J T, LV X W, et al. N-doped porous carbon hollow microspheres encapsulated with iron-based nanocomposites as advanced bifunctional catalysts for rechargeable Zn-air battery[J]. J Energy Chem, 2020, 49: 14-21. |
39 | PU Z H, LIU T T, AMIINU I S, et al. Transition-metal phosphides: activity origin, energy-related electrocatalysis applications, and synthetic strategies[J]. Adv Funct Mater, 2020, 30(45): 2004009. |
40 | CHEN K, WEN Z H, CAI P W, et al. One-pot scalable route to tri-functional electrocatalysts FeCoPx nanoparticles for integrated electrochemical devices[J]. Appl Catal B: Environ, 2021, 295: 120275. |
41 | WANG M, ZHANG C T, MENG T, et al. Iron oxide and phosphide encapsulated within N, P-doped microporous carbon nanofibers as advanced tri-functional electrocatalyst toward oxygen reduction/evolution and hydrogen evolution reactions and zinc air batteries[J]. J Power Sources, 2019, 413: 367-375. |
42 | XUE D X, YU F J, YING Q, et al. Phosphate-assisted dispersion of iron phosphide in carbon nanosheets towards efficient and durable ORR catalysts in acidic and alkaline media[J]. ChemCatChem, 2021, 13(20): 4431-4441. |
43 | JIN H H, ZHOU H, JI P X, et al. ZIF-8/LiFePO4 derived Fe-N-P Co-doped carbon nanotube encapsulated Fe2P nanoparticles for efficient oxygen reduction and Zn-air batteries[J]. Nano Res, 2020, 13(3): 818-823. |
44 | WU M C, GUO B K, NIE A, et al. Tailored architectures of FeNi alloy embedded in N-doped carbon as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery[J]. J Colloid Interf Sci, 2020, 561: 585-592. |
45 | LI S S, CHEN W H, PAN H Z, et al. FeCo alloy nanoparticles coated by an ultrathin N-doped carbon layer and encapsulated in carbon nanotubes as a highly efficient bifunctional air electrode for rechargeable Zn-air batteries[J]. ACS Sustain Chem Eng, 2019, 7(9): 8530-8541. |
46 | GAO X W, YANG J H, SONG K Y, et al. Robust FeCo nanoparticles embedded in a N-doped porous carbon framework for high oxygen conversion catalytic activity in alkaline and acidic media[J]. J Mater Chem A, 2018, 6(46): 23445-23456. |
47 | HUANG L B, ZHAO L, ZHANG Y, et al. Engineering carbon-shells of M@NC bifunctional oxygen electrocatalyst towards stable aqueous rechargeable Zn-air batteries[J]. Chem Eng J, 2021, 418: 129409. |
48 | SAMANTA A, RETNA RAJ C R. Bifunctional nitrogen-doped hybrid catalyst based on onion-like carbon and graphitic carbon encapsulated transition metal alloy nanostructure for rechargeable zinc-air battery[J]. J Power Sources, 2020, 455: 227975. |
49 | JIA J C, YANG H J, WANG G X, et al. Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes as multifunctional electrocatalysts for oxygen catalysis and CO2 reduction[J]. ChemElectroChem, 2018, 5(3): 471-477. |
50 | LIU Z, ZHU Y F, XIAO K K, et al. Fe/Fe3C embedded in N-doped worm-like porous carbon for high-rate catalysis in rechargeable zinc air batteries[J]. ACS Appl Mater Inter, 2021, 13(21): 24710-24722. |
51 | ZONG L B, CHEN X, LIU S L, et al. Ultrafine Fe/Fe3C decorated on Fe-N-C as bifunctional oxygen electrocatalysts for efficient Zn-air batteries[J]. J Energy Chem, 2021, 56: 72-79. |
52 | WU Y L, XIAO Z X, JIN Z C, et al. The cobalt carbide/bimetallic CoFe phosphide dispersed on carbon nanospheres as advanced bifunctional electrocatalysts for the ORR, OER, and rechargeable Zn-air batteries[J]. J Colloid Interf Sci, 2021, 590: 321-329. |
53 | WANG Y L, GAN R H, LIU H, et al. Fe3O4/Fe2O3/Fe nanoparticles anchored on N-doped hierarchically porous carbon nanospheres as a high-efficiency ORR electrocatalyst for rechargeable Zn-air batteries[J]. J Mater Chem A, 2021, 9(5): 2764-2774. |
[1] | 王雪, 王意波, 王显, 祝建兵, 葛君杰, 刘长鹏, 邢巍. 酸性电解水过程中氧析出反应的机理及铱基催化剂的研究进展[J]. 应用化学, 2022, 39(4): 616-628. |
[2] | 张艺潆, 李翠艳, 赵杰, 余笑明, 方千荣. 卟啉-硫醚基共价有机框架材料用于氧还原反应电催化剂[J]. 应用化学, 2022, 39(4): 647-656. |
[3] | 李赫, 李宫, 宫雪, 阮明波, 韩策, 宋平, 徐维林. Pt/C催化剂长时间ORR过程性能衰减的机理[J]. 应用化学, 2022, 39(10): 1564-1571. |
[4] | 李宫, 金龙一, 姚鹏飞, 刘聪, 徐维林. 介孔炭负载铂纳米粒子的高效氧还原催化剂的可控设计[J]. 应用化学, 2021, 38(12): 1639-1646. |
[5] | 魏振业, 孟君玲, 王浩聪, 张文文, 刘孝娟, 孟健. 同型异质表面修饰提高La2NiO4+δ阴极的电催化活性[J]. 应用化学, 2020, 37(8): 939-951. |
[6] | 陈凤英, 李克智, 胡广志. 碳纳米管负载四硝基金属酞菁-MnO2双催化剂催化氧还原性能[J]. 应用化学, 2019, 36(1): 97-106. |
[7] | 陈思,孙立臻,舒欣欣,张进涛. 石墨烯基催化剂的设计合成与电催化应用[J]. 应用化学, 2018, 35(3): 272-285. |
[8] | 库里松.哈衣尔别克, 曾涵. 介孔碳掺杂氮材料-壳聚糖固定漆酶电极的直接电化学行为及化学传感性能[J]. 应用化学, 2013, 30(10): 1194-1201. |
[9] | 李芬, 徐献芝, 朱梅, 宋辉. 催化层位置对气体扩散电极性能的影响[J]. 应用化学, 2008, 25(6): 750-752. |
[10] | 黄辉, 张文魁, 赵峰鸣, 马淳安, 甘永平, 葛忠华. 纳米碳管空气电极在氧还原反应中的电催化性能[J]. 应用化学, 2002, 19(8): 759-763. |
[11] | 黄成德, 田建华, 史晶石, 韩佐青, 陈延禧. 碳的热处理对PEMFC氧电极性能的影响[J]. 应用化学, 2001, 18(6): 444-446. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||