应用化学 ›› 2022, Vol. 39 ›› Issue (02): 223-234.DOI: 10.19894/j.issn.1000-0518.210078
陈颖1, 胡天丁1, 刘云利1, 张蒲2, 支云飞1(), 陕绍云1()
收稿日期:
2021-02-22
接受日期:
2021-06-17
出版日期:
2022-02-10
发布日期:
2022-02-09
通讯作者:
支云飞,陕绍云
作者简介:
shansy411@163.com基金资助:
Ying CHEN1, Tian-Ding HU1, Yun-Li LIU1, Pu ZHANG2, Yun-Fei ZHI1(), Shao-Yun SHAN1()
Received:
2021-02-22
Accepted:
2021-06-17
Published:
2022-02-10
Online:
2022-02-09
Contact:
Yun-Fei ZHI,Shao-Yun SHAN
Supported by:
摘要:
二氧化硫(SO2)过量排放对自然环境造成了严重威胁,使得SO2的捕集和利用在工业生产中被广泛关注。目前,SO2的捕集技术已经相对成熟,对捕集后SO2的高附加值利用成为当前的热点问题。在SO2利用方法中,化学资源化利用由于具有原子经济性高、能耗低等优点,是实现SO2高附加值最有前景的方法之一。本文综述了SO2在无机反应中的氧化、还原反应,有机反应中的小分子、大分子方面的转化研究进展。介绍了SO2在化学资源化利用中的反应机理、反应条件、转化效果,以及不同催化剂的应用对反应效果的影响等情况;指出了在SO2化学利用中反应条件严苛、对催化剂依赖性高等方面的问题;展望了在SO2化学资源化利用研究中的进一步重点研究方向。
中图分类号:
陈颖, 胡天丁, 刘云利, 张蒲, 支云飞, 陕绍云. 二氧化硫在化学资源化利用中的研究进展[J]. 应用化学, 2022, 39(02): 223-234.
Ying CHEN, Tian-Ding HU, Yun-Li LIU, Pu ZHANG, Yun-Fei ZHI, Shao-Yun SHAN. Research Progress on Chemical Resourse Utilization of Sulfur Dioxide[J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 223-234.
图7 钯催化芳基硼酸、SO2和肼三组分反应可能的机理[61]
Fig.7 Possible mechanism of the three-component reaction of aryl boric acid,SO2and hydrazine catalyzed by palladium[61]
图9 纤维素Cr(Salen)型催化剂催化SO2与环氧环己烷共聚机理图[77]
Fig.9 Mechanism of SO2and cyclohexene oxide copolymerization catalyzed by cellulose Cr(Salen)type catalyst[77]
[1] | WU H, CAI W, LONG M, et al. Sulfur dioxide capture by heterogeneous oxidation on hydroxylated manganese dioxide[J]. Environ Sci Technol, 2016, 50(11):5809-5816. |
[2] | LI X, YI H, WANG H. Sulphur dioxide and arsenic affect male reproduction via interfering with spermatogenesis in mice[J]. Ecotoxicol Environ Saf, 2018, 165:164-173. |
[3] | BRANDT-RAUF P, FALLON L, TARANTINI T, et al. Health hazards of fire fighters: exposure assessment[J]. Occup Environ Med, 1988, 45(9):606-612. |
[4] | WANG M, JIANG X. The recycling of sulfur dioxide[J]. Chin Sci Bull, 2018, 63(26):2707-2716. |
[5] | RUMAVOR M, D?AZ-SOMOANO M, LOPEZ-ANTON M, et al. Temperature programmed desorption as a tool for the identification of mercury fate in wet-desulphurization systems[J]. Fuel, 2015, 148:98-103. |
[6] | HILL F, ZANK J. Flue gas desulphurization by spray dry absorption[J]. Chem Eng Process, 2000, 39(1):45-52. |
[7] | WANG F, ZHANG Y, MAO Z. High adsorption activated calcium silicate enabling high-capacity adsorption for sulfur dioxide[J]. New J Chem, 2020, 44(27):11879-11886. |
[8] | BALTRUSAITIS J, USHER C R, GRASSIAN V H. Reactions of sulfur dioxide on calcium carbonate single crystal and particle surfaces at the adsorbed water carbonate interface[J]. Phys Chem Chem Phys, 2007, 9(23):3011-3024. |
[9] | YU X, HAO J, XI Z, et al. Investigation of low concentration SO2adsorption performance on different amine-modified merrifield resins[J]. Atmos Pollut Res, 2019, 10(2):404-411. |
[10] | SHAO J, ZHANG J, ZHANG X, et al. Enhance SO2adsorption performance of biochar modified by CO2activation and amine impregnation[J]. Fuel, 2018, 224:138-146. |
[11] | ALQAHTANI M S, WANG X, GRAY J L, et al. Plasma-assisted catalytic reduction of SO2to elemental sulfur: influence of nonthermal plasma and temperature on iron sulfide catalyst[J]. J Catal, 2020, 391:260-272. |
[12] | MOUSAVI S E, PAHLAVANZADEH H, KHANI M, et al. Selective catalytic reduction of SO2with methane for recovery of elemental sulfur over nickel-alumina catalysts[J]. React Kinet, Mech Catal, 2018, 124(2):669-682. |
[13] | LIU T, CLEGG S L, ABBATT J P. Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles[J]. Proc Natl Acad Sci, India, 2020, 117(3):1354-1359. |
[14] | LIM J, PYUN J, CHAR K. Recent approaches for the direct use of elemental sulfur in the synthesis and processing of advanced materials[J]. Angew Chem Int Ed, 2015, 54(11):3249-3258. |
[15] | GRIEBEL J J, GLASS R S, CHAR K, et al. Polymerizations with elemental sulfur: a novel route to high sulfur content polymers for sustainability, energy and defense[J]. Prog Polym Sci, 2016, 58:90-125. |
[16] | CHEN C L, WANG C H, WENG H S. Supported transition-metal oxide catalysts for reduction of sulfur dioxide with hydrogen to elemental sulfur[J]. Chemosphere, 2004, 56(5):425-431. |
[17] | FENG T, ZHAO X, WANG T, et al. Reduction of SO2with CO to elemental sulfur in activated carbon bed[J]. Energy Fuels, 2016, 30(8):6578-6584. |
[18] | NGWENYA T, NONGWE I, JEWELL L L. Reduction of sulphur dioxide using carbon monoxide over gold supported catalysts[J]. Gold Bull, 2018, 51(4):153-162. |
[19] | WANG R, YAN J, ZHOU Z, et al. Regeneration of hydrogen storage alloy in spent nickel-metal hydride batteries[J]. J Alloys Compd, 2002, 336(1/2):237-241. |
[20] | MIMURA K, NANJO M. Production of pure tantalum by carbon-reduction smelting and hydrogen plasma-arc melting with refining[J]. Mater Trans, JIM, 1990, 31(4):293-301. |
[21] | COCHRAN C N. Recovery of hydrogen fluoride fumes on alumina in aluminum smelting[J]. Environ Sci Technol, 1974, 8(1):63-66. |
[22] | FENG T, HUO M, ZHAO X, et al. Reduction of SO2to elemental sulfur with H2and mixed H2/CO gas in an activated carbon bed[J]. Chem Eng Res Des, 2017, 121:191-199. |
[23] | CHEN X, KUO D H, WU Z Y, et al. Multi-component (Cu, Mn)(Se, S) nanosheet catalysts for redox reactions in the dark[J]. Sep Purif Technol, 2019, 211:71-80. |
[24] | CAI S, HU H, LI H, et al. Design of multi-shell Fe2O3@MnO x @CNTs for the selective catalytic reduction of NO with NH3: improvement of catalytic activity and SO2tolerance[J]. Nanoscale, 2016, 8(6):3588-3598. |
[25] | GE T, ZUO C, CHEN H, et al. Catalytic activity and molecular behavior of lanthanum modified CoS x /γ-Al2O3catalysts for the reduction of SO2to sulfur in smelter off-gas using CO-H2mixture as reductant[J]. Ind Eng Chem Res, 2019, 58(9):3595-3605. |
[26] | ZHAO T, LIANG J, ZHANG Y, et al. Unexpectedly efficient SO2capture and conversion to sulfur in novel imidazole-based deep eutectic solvents[J]. Chem Commun, 2018, 54(65):8964-8967. |
[27] | DUNN J P, KOPPULA P R, STENGER H G, et al. Oxidation of sulfur dioxide to sulfur trioxide over supported vanadia catalysts[J]. Appl Catal B, 1998, 19(2):103-117. |
[28] | ROBINSON B W, KUSAKABE M. Quantitative preparation of sulfur dioxide, for sulfur-34/sulfur-32 analyses, from sulfides by combustion with cuprous oxide[J]. Anal Chem, 1975, 47(7):1179-1181. |
[29] | TAKAHASHI K, KASAHARA M, ITOH M. A kinetic model of sulfuric acid aerosol formation from photochemical oxidation of sulfur dioxide vapor[J]. J Aerosol Sci, 1975, 6(1):45-55. |
[30] | GERHARD E R, JOHNSTONE H. Air pollution studies-photochemical oxidation of sulfur dioxide in air[J]. Ind Eng Chem, 1955, 47(5):972-976. |
[31] | PIERSON W R, HAMMERLE R H, BRACHACZEK W W. Sulfate formed by interaction of sulfur dioxide with filters and aerosol deposits[J]. Anal Chem, 1976, 48(12):1808-1811. |
[32] | COLLMAN J P, VALENTINE J S, VALENTINE J R D. Formation of chelated sulfate by reactions between sulfur dioxide and oxygen in the coordination sphere of iridium and ruthenium complexes[J]. Inorg Chem, 1971, 10(2):219-225. |
[33] | HORN R, WEISSBERGER E, COLLMAN J P. Oxygen-18 study of the reaction between iridium-and platinum-oxygen complexes and sulfur dioxide to form coordinated sulfate[J]. Inorg Chem, 1970, 9(10):2367-2371. |
[34] | KAICHEV V V, POPOVA G Y, CHESALOV Y A, et al. Selective oxidation of methanol to form dimethoxymethane and methyl formate over a monolayer V2O5/TiO2catalyst[J]. J Catal, 2014, 311:59-70. |
[35] | ELMI A S, TRONCONI E, CRISTIANI C, et al. Mechanism and active sites for methanol oxidation to methyl formate over coprecipitated vanadium-titanium oxide catalysts[J]. Ind Eng Chem Res, 1989, 28(4):387-393. |
[36] | LEE M D, CHEN W S, CHIANG H P. Ammoxidation of toluene to benzonitrile over vanadium-bismuth scheelite[J]. Appl Catal, A, 1993, 101(2):269-281. |
[37] | HABER J, WOJCIECHOWSKA M. Ammoxidation of toluene on MgF2-supported monolayer vanadium oxide catalysts[J]. Catal Lett, 1991, 10(3/4):271-278. |
[38] | QING M, SU S, WANG L, et al. Getting insight into the oxidation of SO2to SO3over V2O5-WO3/TiO2catalysts: reaction mechanism and effects of NO and NH3 [J]. Chem Eng J, 2019, 361:1215-1224. |
[39] | ASSEFI M, TORABI M, SAJADI A. Catalytic conversion of SO2released from the roasting process of copper sulfides to SO3by new nanocatalysts of vanadium (V) oxide[J]. J Chin Chem Soc 2017, 64(2):164-175. |
[40] | LI Y, XIONG J, LIN Y, et al. Distribution of SO2oxidation products in the SCR of NO over V2O5/TiO2catalysts at different temperatures[J]. Ind Eng Chem Res, 2020, 59(11):5177-5185. |
[41] | TAO L, WANG X, NING P, et al. Removing sulfur dioxide from smelting flue and increasing resource utilization of copper tailing through the liquid catalytic oxidation[J]. Fuel Process Technol, 2019, 192:36-44. |
[42] | TAO L, WANG X, WANG L, et al. Efficient removal of sulfur dioxide from flue gas through liquid catalytic oxidation using copper tailing as the in situ iron ion donator[J]. Energy Fuels, 2020, 34:3513-3521. |
[43] | DONG Y N, CHEN W C, ZHANG L L, et al. Green and efficient sulfur dioxide removal using hydrogen peroxide in rotating packed bed reactor: modeling and experimental study[J]. Chem Eng Sci, 2021:116467. |
[44] | LIU L, NI Y, ZHI Y, et al. Sustainable and biodegradable copolymers from SO2and renewable eugenol: a novel urea fertilizer coating material with superio slow release performance[J]. Macromolecules, 2020, 53(3):936-945. |
[45] | VOGEL P, TURKS M, BOUCHEZ L, et al. New organic chemistry of sulfur dioxide[J]. Acc Chem Res, 2007, 40(10):931-942. |
[46] | BOUCHEZ L, VOGEL P. One-pot, three-component synthesis of open-chain, polyfunctional sulfones[J]. Cheminform, 2002, 2002(2):7163-7165. |
[47] | LASERNA V, MARTIN E, ESCUDERO-AD?N E C, et al. Aluminum-catalyzed formation of functional 1, 3, 2-dioxathiolane 2-oxides from sulfur dioxide: an easy entry towards N-substituted aziridines[J]. Adv Synth Catal, 2016, 358(23):3832-3839. |
[48] | HERRMANN W A, ROESKY P W, SCHERER W, et al. Multiple bonds between main-group elements and transition metals, 140. cycloaddition reactions of methyltrioxorhenium (VII): diphenylketene and sulfur dioxide[J]. Organometallics, 1994, 13(11):4536-4542. |
[49] | CHRISTL M, BRUNN E, LANZENDOERFER F. Reactions of benzvalene with tetracyanoethylene, 2, 3-dichloro-5, 6-dicyano-p-benzoquinone, chlorosulfonyl isocyanate, and sulfur dioxide. evidence for concerted 1, 4-cycloadditions to a vinylcyclopropane system[J]. J Am Chem Soc, 1984, 106(2):373-382. |
[50] | KROLL J O, WOJCICKI A. Sulfur dioxide insertion: XIX. SO2insertion and cycloaddition reactions of some h5-C5H5W (CO)3R complexes[J]. J Organomet Chem, 1974, 66(1):95-101. |
[51] | ZHAO T, LI Y, ZHANG Y, et al. Efficient SO2capture and fixation to cyclic sulfites by dual ether-functionalized protic ionic liquids without any additives[J]. ACS Sustainable Chem Eng, 2018, 6(8):10886-10895. |
[52] | TAKENAKA Y, KIYOSU T, MORI G, et al. Synthesis of cyclic sulfites from epoxides and sulfur dioxide with silica-immobilized homogeneous catalysts[J]. ChemSusChem, 2012, 5(1):194-199. |
[53] | MEGIA-FERNANDEZ A, MORALES-SANFRUTOS J, HERNANDEZ-MATEO F, et al. Synthetic applications of cyclic sulfites, sulfates and sulfamidates in carbohydrate chemistry[J]. Curr Org Chem, 2011, 15(3):401-432. |
[54] | BREDIKHINA Z, SAVEL′EV D, BREDIKHIN A. Cyclic sulfites, key intermediates in synthesis of 1-alkylamino-3-aryloxy-2-propanols from glycidol[J]. Russ J Org Chem, 2002, 38(2):213-219. |
[55] | P?RVULESCU V I, HARDACRE C. Catalysis in ionic liquids[J]. Chem Rev, 2007, 107(6):2615-2665. |
[56] | MEHNERT C P. Supported ionic liquid catalysis[J]. Chem-Eur J, 2005, 11(1):50-56. |
[57] | WELTON T. Ionic liquids in catalysis[J]. Coord Chem Rev, 2004, 248(21/22/23/24):2459-2477. |
[58] | YANG Z Z, HE L N, SONG Q W, et al. Highly efficient SO2absorption/activation and subsequent utilization by polyethylene glycol-functionalized Lewis basic ionic liquids[J]. Phys Chem Chem Phys, 2012, 14(45):15832-15839. |
[59] | GARC?A-GRANADOS A, PARRA A, RIVAS F, et al. Seven-membered cyclic sulfite eudesmane derivatives: partial synthesis, structural determination, and enzymatic resolution[J]. J Org Chem, 2007, 72(2):643-646. |
[60] | GAO Y, SHARPLESS K B. Vicinal diol cyclic sulfates. like epoxides only more reactive[J]. J Am Chem Soc, 1988, 110(22):7538-7539. |
[61] | YE S, WU J. A palladium-catalyzed three-component coupling of arylboronic acids, sulfur dioxide and hydrazines[J]. Chem Commun, 2012, 48(62):7753-7755. |
[62] | KARAN C K, BHATTACHARJEE M A. Copper Metal-organic hydrogel as a catalyst for SO2and CO2fixation under ambient conditions[J]. Eur J Inorg Chem, 2019, 2019(31):3605-3611. |
[63] | ZHANG J, ZHOU K, WU J. Generation of sulfonated isobenzofuran-1(3H)-ones under photocatalysisthrough the insertion of sulfur dioxide[J]. Org Chem Front, 2018, 5(5):813-816. |
[64] | LIU T, LI Y, LAI L, et al. Photocatalytic reaction of potassium alkyltrifluoroborates and sulfur dioxide with alkenes[J]. Org Lett, 2018, 20(12):3605-3608. |
[65] | HE F S, CEN X, YANG S, et al. Intramolecular oxysulfonylation of alkenes with the insertion of sulfur dioxide under photocatalysis[J]. Org Chem Front, 2018, 5(16):2437-2441. |
[66] | GONG X, CHEN J, LAI L, et al. Benzylic C (sp 3)-H bond sulfonylation of 4-methylphenols with the insertion of sulfur dioxide under photocatalysis[J]. Chem Commun, 2018, 54(79):11172-11175. |
[67] | ZHOU K, LIU J B, XIE W, et al. Photoinduced synthesis of 2-sulfonylacetonitriles with the insertion of sulfur dioxide under ultraviolet irradiation[J]. Chem Commun, 2020, 56(17):2554-2557. |
[68] | WANG X, KUANG Y, YE S, et al. Photoredox-catalyzed synthesis of sulfones through deaminative insertion of sulfur dioxide[J]. Chem Commun, 2019, 55(99):14962-14964. |
[69] | CHOI W, SANDA F, ENDO T. Novel one-pot syntheses of sulfur-containing polymers from a bifunctional five-membered cyclic dithiocarbonate[J]. J Polym Sci, Part A: Polym Chem, 1998, 36(7):1189-1195. |
[70] | LUO M, ZHANG X H, DARENSBOURG D J. Poly (monothiocarbonate) s from the alternating and regioselective copolymerization of carbonyl sulfide with epoxides[J]. Acc Chem Res, 2016, 49(10):2209-2219. |
[71] | MATSUDA M, HARA Y. Radical copolymerization of sulfur dioxide and chloroprene[J]. J Polym Sci Pol Chem, 1972, 10(3):837-843. |
[72] | ALEXANDER R, DOYLE J. Polysulfones of norbornadiene[J]. J Polym Sci, Part B: Polym Lett, 1963, 1(11):625-627. |
[73] | TANAKA N, SATO E, MATSUMOTO A. Thermally stable polysulfones obtained by regiospecific radical copolymerization of various acyclic and cyclic 1, 3-diene monomers with sulfur dioxide and subsequent hydrogenation[J]. Macromolecules, 2011, 44(23):9125-9137. |
[74] | TANAKA N, SATO E, MATSUMOTO A. Highly-controlled regiospecific free-radical copolymerization of 1, 3-diene monomers with sulfur dioxide[J]. Org Biomol Chem, 2011, 9(10):3753-3758. |
[75] | KITAMURA T, TANAKA N, MIHASHI A, et al. Soluble and thermally stable polysulfones prepared by the regiospecific and alternating radical copolymerization of 2, 4-hexadiene with sulfur dioxide[J]. Macromolecules, 2010, 43(4):1800-1806. |
[76] | ALI S A, HALADU S A. Synthesis, solution properties and scale-inhibiting behaviour of a diallylammonium/sulfur dioxide cyclocopolymer bearing phospho-and sulfopropyl pendents[J]. Polym Int, 2014, 63(9):1682-1690. |
[77] | ZHI Y, DENG X, NI Y, et al. Cellulosic Cr (salen) complex as an efficient and recyclable catalyst for copolymerization of SO2with epoxide[J]. Carbohydr Polym, 2018, 194:170-176. |
[1] | 张毅城, 查飞, 唐小华, 常玥, 田海锋, 郭效军. 非均相催化制备有机过氧化物的研究进展[J]. 应用化学, 2023, 40(6): 769-788. |
[2] | 于宜辰, 张雨宸, 张耀远, 吴芹, 史大昕, 陈康成, 黎汉生. 本体金属氧化物在丙烷无氧脱氢中的研究进展[J]. 应用化学, 2023, 40(6): 789-805. |
[3] | 熊兴泉, 张辉, 高利柱. 木质素的功能化与应用研究进展[J]. 应用化学, 2023, 40(6): 806-819. |
[4] | 周嘉成, 王冬冬, 高云宝, 金晶, 姜伟. 基于聚二氧化碳树脂压敏胶的流变及粘结性能[J]. 应用化学, 2023, 40(6): 871-878. |
[5] | 杨玉雯, 齐婧瑶, 李林, 楚国宁, 王赛, 张钰, 张爽. 磁性NiFe2O4负载Ru催化5-羟甲基糠醛选择性氧化合成2,5-呋喃二甲酸[J]. 应用化学, 2023, 40(6): 879-887. |
[6] | 朱凤, 彭小连, 张文彬. 质子给受体对电催化反应影响的研究进展[J]. 应用化学, 2023, 40(5): 666-680. |
[7] | 雷学博, 刘慧景, 丁赫宇, 申国栋, 孙润军. 用于降解印染废水中有机污染物的光催化剂的研究进展[J]. 应用化学, 2023, 40(5): 681-696. |
[8] | 伍凡, 田贺元, 刘鹏, 孙立伟, 张一波, 杨向光. 高氧空位尖晶石型锰基催化剂用于低温NH3-SCR反应[J]. 应用化学, 2023, 40(5): 697-707. |
[9] | 师文君, 孙中辉, 宋忠乾, 许佳楠, 韩冬雪, 牛利. 钠离子电池层状过渡金属氧化物正极材料研究进展[J]. 应用化学, 2023, 40(4): 583-596. |
[10] | 李冰, 刘军辉, 宋亚坤, 李想, 郭旭明, 熊健. 金属-有机骨架材料在催化氨硼烷水解释氢中的研究进展[J]. 应用化学, 2023, 40(3): 329-340. |
[11] | 刘振邦, 张硕, 包宇, 马英明, 梁蔚淇, 王伟, 何颖, 牛利. 深度学习在化学信息学中的应用研究进展[J]. 应用化学, 2023, 40(3): 360-373. |
[12] | 王华宇, 张超, 陈柯铭, 葛明. 金属-有机框架MIL-88A(Fe)及其复合材料在水处理中的研究进展[J]. 应用化学, 2023, 40(2): 155-168. |
[13] | 张琴, 刘文彬, 樊利娇, 谢宇铭, 黄国林. 功能化介孔二氧化硅的制备及其吸附分离水中铀的研究进展[J]. 应用化学, 2023, 40(2): 169-187. |
[14] | 王路飞, 甄蒙蒙, 沈伯雄. 贫电解液下电催化剂对调控锂硫电池性能的研究进展[J]. 应用化学, 2023, 40(2): 188-209. |
[15] | 沈彦龙, 程立业, 孟祥茹, 李琼, 杜连云, 王恩鹏, 陈长宝. 人参连作土壤对不同生育期人参生长发育及抗氧化系统的影响[J]. 应用化学, 2023, 40(1): 109-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||