[1] 石英江. 高纯钛的生产与应用[J]. 上海金属(有色分册), 1993, 14(6): 26-33. SHI Y J. The production and application of highly pure titanium[J]. Shanghai Met (Nonferrous Fascicule), 1993, 14(6): 26-33. [2] 莫畏. 钛[M]. 北京: 冶金工业出版社, 2008: 4, 255. MO W. Titanium[M]. Beijing: Metallurgical Industry Press, 2008: 4, 255. [3] 刘正红, 陈志强. 高纯钛的应用及其生产方法[J]. 稀有金属快报, 2008, 27(2): 1-8. LIU Z H, CHEN Z Q. Application of high purity titanium and methods to produce it[J]. Rare Met Lett, 2008, 27(2): 1-8. [4] 刘克敌, 张凌峰, 熊毅, 等. 纯度对钛力学性能与组织的影响[J]. 塑性工程学报, 2018, 25(4): 194-198. LIU K D, ZHANG L F, XIONG Y, et al. Influence of purity on mechanical properties and microstructure of titanium[J]. J Plast Eng, 2018, 25(4): 194-198. [5] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 海绵钛: GB/T 2524-2019[S]. 北京: 中国标准出版社, 2019. General administration of quality supervision, inspection and quarantine of the People′s Republic of China, Standardization administration of the People′s Republic of China. Titanium sponge: GB/T 2524-2019[S]. Beijing: Standard Press of China, 2019. [6] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 钛及钛合金牌号和化学成分: GB/T 3620.1-2016[S]. 北京: 中国标准出版社, 2017. General administration of quality supervision, inspection and quarantine of the People′s Republic of China, Standardization administration of the People′s Republic of China. Designation and composition of titanium and titanium alloys: GB/T 3620.1-2016[S]. Beijing: Standard press of China, 2017. [7] 李娜, 刘英, 李艳芬, 等. ICP-MS法测定高纯钛中痕量元素[J]. 分析试验室, 2011, 30(12): 22-25. LI N, LIU Y, LI Y F, et al. Determination of trace amounts of elements in high purity titanium by ICP-MS[J]. Chinese J Anal Lab, 2011, 30(12): 22-25. [8] 李娜, 刘冰心, 张丽, 等. 热水解沉淀法分离基体钛-ICP-MS 法测定高纯钛中痕量元素[J]. 分析试验室, 2012, 31(12): 9-12. LI N, LIU B X, ZHANG L, et al. Separaton of titanium matrix by pyrohydrolysis-deposition method-determination of trace amounts of elements in high purity titanium by ICP-MS[J]. Chinese J Anal Lab, 2012, 31(12): 9-12. [9] 中华人民共和国工业和信息化部. 高纯钛化学分析方法 痕量杂质元素的测定 电感耦合等离子体质谱法: YS/T 892-2013[S]. 北京: 冶金工业出版社, 2013. Ministry of industry and information technology of the People′s Republic of China. Methods for chemical analysis of high purity titanium-determination of trace impurity element content-inductively coupled plasma mass spectrometry: YS/T 892-2013[S]. Beijing: Metallurgical Industry Press, 2013. [10] 黎蓉, 李娜, 童坚, 等. 离子交换色谱一电感耦合等离子体质谱法测定高纯钛中痕量杂质元素[J]. 分析化学, 2009, 37(5): 749-752. LI R, LI N, TONG J, et al. Determination of trace amounts of elements in high purity titanium by ion-exchange chromatography and inductively coupled plasma mass spectrometry[J]. Chinese J Anal Chem, 2018, 46(4): 570-577. [11] 王小如. 电感耦合等离子体质谱应用实例[M]. 北京: 化学工业出版社, 2005: 268. WANG X R. Application of inductively coupled plasma mass spectrometry[M]. Beijing: Chemical Industry Press, 2005: 268. [12] 陈文, 樊小伟, 郭才女, 等. 电感耦合等离子体串联质谱法测定高纯稀土中铁的含量[J]. 分析化学, 2019, 47(3): 403-409. CHEN W, FAN X W, GUO C N, et al. Determination of iron content in high purity rare earth by inductively coupled plasma-tandem mass spectrometry[J]. Chinese J Anal Chem, 2019, 47(3): 403-409. [13] ZHU Y B. Determination of rare earth elements in seawater samples by inductively coupled plasma tandem quadrupole mass spectrometry after coprecipitation with magnesium hydroxide[J]. Talanta, 2020, 209(3): 1-8. [14] 任传婷, 方卫, 冯璐, 等. ICP-MS法测定纯铑中16个杂质元素[J]. 贵金属, 2017, 38(3): 66-71. REN C T, FANG W, FENG L, et al. Determination of 16 impurities in pure rhodium by ICP-MS[J]. Precious Metals, 2017, 38(3): 66-71. [15] 李秋莹, 甘建壮, 李立新, 等. ICP-MS法测定高纯钯中18个痕量杂质元素[J]. 贵金属, 2017, 38(4): 49-55. LI Q Y, GAN J Z, LI L X, et al. Determination of 18 trace impurities in high purity palladium by ICP-MS[J]. Precious Met, 2017, 38(4): 49-55. [16] 蒋慧, 雷宁生, 黎林, 等. 动态反应池电感耦合等离子体质谱法同时测定尿液中17种元素[J]. 理化检验-化学分册, 2017, 53(11): 1286-1290. JIANG H,LEI N S, LI L, et al. Simultaneous ICP-MS determination of 17 elements in urine with dynamic reaction cell[J]. Phys Test Chem Anal Part B: Chem Anal, 2017, 53(11): 1286-1290. [17] 罗策, 刘婷, 白焕焕, 等. 电感耦合等离子体原子发射光谱法测定Ti80钛合金中铝铌锆钼铁的酸体系溶解条件探讨[J]. 冶金分析, 2016, 36(10): 69-75. LUO C, LIU T, BAI H H, et al. Discussion on acid dissolution conditions for the determination of aluminum, niobium, zirconium, molybdenum and iron in Ti80 titanium alloy by inductively coupled plasma atomic emission spectrometry[J]. Metall Anal, 2016, 36(10): 69-75. [18] 龚子珊, 蒋学慧, 杨雨, 等. 电感耦合等离子体质谱中的基质效应[J]. 分析测试学报, 2029, 39(8): 1058-1064. GONG Z S, JIANG X H, YANG Y, et al. Matrix effects in inductively coupled plasma mass spectrometry[J]. J Instrum Anal, 2020, 39(8): 1058-1064. [19] 杏朝刚, 袁京群, 李世敏. 微波消解-动态反应池电感耦合等离子体质谱测定农产品中的痕量硒[J]. 浙江农业学报, 2018, 30(8): 1414-1419. XING C G, YUAN J Q, LI S M. Determination of trace selenium in agricultural products with microwave digestion-dynamic reaction cell inductively coupled plasma mass spectrometry[J]. J Zhejiang Agric Univ, 2018, 30(8): 1414-1419. [20] NIXON D E, NEUBAUER K R, ECKDAHL S J, et al. Comparison of tunable bandpass reaction cell inductively coupled plasma mass spectrometry with conventional inductively coupled plasma mass spectrometry for the determination of heavy metals in whole blood and urine[J]. Spectrochim Acta, Part B, 2004, 59(7): 1377-1387. |