[1] MASTALIR Á, KIRÁLY Z, PATZKÓ Á, et al. Synthesis and catalytic application of Pd nanoparticles in graphite oxide[J]. Carbon, 2008, 46(13): 1631-1637. [2] DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chem Soc Rev, 2009, 39(1): 228-240. [3] SUN Y, SHI G. Graphene/polymer composites for energy applications[J]. J Polym Scie Part B Polym Phys, 2013, 51(4): 231-253. [4] KUHN L, GORJI N E. Review on the graphene/nanotube application in thin film solar cells[J]. Mater Lett, 2016, 171(may15): 323-326. [5] ZHANG Q, WU Z, LI N, et al. Advanced review of graphene-based nanomaterials in drug delivery systems: synthesis, modification, toxicity and application[J]. Mater Sci Eng C, 2017, 77: 1363-1375. [6] XU J, CAO Z, ZHANG Y, et al. A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: preparation, application, and mechanism[J]. Chemosphere, 2018, 195: 351-364. [7] MI X, HUANG G, XIE W, et al. Preparation of graphene oxide aerogel and its adsorption for Cu2+ ions[J]. Carbon, 2012, 50(13): 4856-4864. [8] BOUKHVALOV D W. Oxidation of a graphite surface: the role of water[J]. J Phys Chem, 2014, 118(47): 27594-27598. [9] 冯明珠, 彭同江, 孙红娟, 等. 氧化程度对氧化石墨结构与阳离子交换容量的影响[J]. 无机化学学报, 2016, 32(3): 60-66. FENG M Z, PENG T J, SUN H J, et al. Effect of oxidation degree on structure and cation exchange capacity of graphite oxide[J]. Chinese J Inorg Chem, 2016, 32(3): 60-66. [10] 孙红娟, 彭同江, 王泉珺, 等. 石墨氧化过程中结构与表面性能的变化[C]. 中国地球科学联合学术年会论文集. 北京: 中国地球物理学会, 2016: 2013-2015. SUN H J, PENG T J, WANG Q J, et al. Changes of structure and surface properties during graphite oxidation[C]. China Earth Science Joint Academic Conference: Chinese Geophysical Society, 2016: 2013-2015. [11] 马杰, 彭同江, 孙红娟, 等. 氧化石墨阳离子交换容量测定方法与原理比较[J]. 非金属矿, 2020, 43(2): 13-18. MA J, PENG T J, SUN H J, et al. Comparison of determination methods and principles of graphite oxide cation exchange capacity[J]. Non-Met Mines, 2020, 43(2): 13-18. [12] 王泉珺, 孙红娟, 彭同江, 等. 氧化石墨阳离子交换容量测定过程中结构的变化[J]. 物理化学学报, 2017, 33(2): 413-418. WANG Q J, SUN H J, PENG T J, et al. Structure development during the cation exchange processes of graphite oxide[J]. Acta Phys-Chim Sin, 2017, 33(2): 413-418. [13] WANG X, DOU W. Preparation of graphite oxide (GO) and the thermal stability of silicone rubber/GO nanocomposites[J]. Thermochim Acta, 2012, 529: 25-28. [14] LIU L L, AN M Z, XING S C, et al. Preparation of graphene oxide based on expanded graphite[J]. Adv Mater Res, 2014, 881/882/883: 1083-1088. [15] 韩志东, 王建祺. 氧化石墨的制备及其有机化处理[J]. 无机化学学报, 2003, 19(5): 459-461. HAN Z D, WANG J Q. Preparation of graphite oxide and its organic modification[J]. Chinese J Inorg Chem, 2003, 19(5): 459-461. [16] CHEN T S, ZENG B, LIU J L. High throughput exfoliation of graphene oxide from expanded graphite with assistance of strong oxidant in modified hummers method[J]. J Phys: Conference Series, 2009: 188: 012051. [17] SUN L, FUGETSU B. Mass production of graphene oxide from expanded graphite[J]. Mater Lett, 2013, 109: 207-210. [18] ZHANG L L, ZHAO S, TIAN X N, et al. Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes[J]. Langmuir, 2010, 26(22): 17624-17628. [19] ACIK M, LEE G, MATTEVI C, et al. Unusual infrared-absorption mechanism in thermally reduced graphene oxide[J]. Nat Mater, 2010, 9(10): 840-845. [20] PHAM V H, CUONG T V, HUR S H, et al. Chemical functionalization of graphene sheets by solvothermal reduction of a graphene oxide suspension in N-methyl-2-pyrrolidone[J]. J Mater Chem, 2011, 21(10): 3371-3377. [21] HOU B, SUN H J, PENG T J, et al. Rapid preparation of expanded graphite at low temperature[J]. New Carbon Mater, 2020, 35(3): 262-268. [22] KOLTHOFF I M, MILLER I K. The chemistry of persulfate.I.the kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium 1[J]. J Am Chem Soc, 1951, 73(7): 1-30. [23] PALME H. Studien ber die Zersetzung der berschwefelsure[J]. Z Anorg Allg Chem, 1920, 112(1): 97-130. [24] SZABÓ T, BERKESI O, DÉKÁNY I. DRIFT study of deuterium-exchanged graphite oxide[J]. Carbon, 2005, 43(15): 3186-3189. [25] WANG S, GAI L, JIANG H, et al. Reduced graphene oxide grafted by polymer of polybromopyrroles to nanocomposites with superior performance for supercapacitors[J]. J Mater Chem, A, 2015, 3(42): 21257-21268. [26] STANKOVICH S, PINER R D, NGUYEN S B T, et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon, 2006, 44(15): 3342-3347. [27] TIAN H, LIU M, ZHENG W. Constructing 2D graphitic carbon nitride nanosheets/layered MoS2/graphene ternary nanojunction with enhanced photocatalytic activity[J]. Appl Catal B, 2017: 468-476. [28] TIAN H, SHEN K, HU X, et al. N, S co-doped graphene quantum dots-graphene-TiO2 nanotubes composite with enhanced photocatalytic activity[J]. J Alloys Compd, 2017, 691: 369-377. [29] HONGWEI T, CHENXING W, XIN X, et al. Effective electron transfer pathway of the ternary TiO2/RGO/Ag nanocomposite with enhanced photocatalytic activity under visible light[J]. Catalysts, 2017, 7(5): 156. [30] MATSUO Y, MIYABE T, FUKUTSUKA T, et al. Preparation and characterization of alkylamine-intercalated graphite oxide[J]. Carbon, 2007, 45(5): 1005-1012. |