[1] 辛亮, 张兰威. 核酸-微流控芯片检测食品病原微生物的研究进展[J]. 食品科学, 2020, 41(23): 266-272. XIN L, ZHANG L W. Recent progress in nucleic acid-microfluidic chips used for detection of foodborne pathogens: a review[J]. Food Sci, 2020, 41(23): 266-272. [2] 董金颖. 共聚焦显微拉曼光谱技术在病原微生物快速检测中的研究[D]. 大连: 大连医科大学, 2018. DONG J Y. Study on rapid detection of pathogenic microorganisms by confocal Raman microspectroscopy[D]. Dalian: Dalian Medical University, 2018. [3] 搜狐网. 2003年非典全球各国感染及死亡人数[OL]. [2020-03-09]. https://www.sohu.com/a/378545139_120526932. SUHO. Number of SARS infections and deaths worldwide in 2003[OL]. [2020-03-09]. https://www.sohu.com/a/378545139_120526932. [4] DELANNOY S, BEUTIN L, BURGOS Y, et al. Specific detection of enteroaggregative hemorrhagic Escherichia coli O104:H4 strains by use of the CRISPR locus as a target for a diagnostic real-time PCR[J]. J Clin Microbiol, 2012, 50(11): 3485-3492. [5] KAMORUDEEN R T, ADEDOKUN K A, OLARINMOYE A O. Ebola outbreak in West Africa, 2014-2016: Epidemic timeline, differential diagnoses, determining factors, and lessons for future response[J]. J Infect Public Heal, 2020, 13(7): 956-962. [6] 网易新闻网. 肺炎疫情实时动态播报[OL]. [2021-04-06]. https://wp.m.163.com/163/page/news/virus_report/index.html. Netease News. Real time and dynamic report of pneumonia[OL]. [2021-04-06]. https://wp.m.163.com/163/page/news/virus_report/index.html. [7] XIAO Y, LI Z, WANG X, et al. Comparison of three TaqMan real-time reverse transcription-PCR assays in detecting SARS-CoV-2[J]. J Virol Methods, 2021, 288: 114030. [8] SHEN M, ZHOU Y, YE J, et al. Recent advances and perspectives of nucleic acid detection for coronavirus[J]. J Pharm Anal, 2020, 10(2): 97-101. [9] DAO THI V L, HERBST K, BOERNER K, et al. A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples[J]. Sci Transl Med, 2020, 12(556): eabc7075. [10] CRONE M A, PRIESTMAN M, CIECHONSKA M, et al. A role for biofoundries in rapid development and validation of automated SARS-CoV-2 clinical diagnostics[J]. Nat Commun, 2020, 11(1): 4464. [11] CAMPEAU P M, KASPERAVICIUTE D, LU J T, et al. The genetic basis of DOORS syndrome: an exome-sequencing study[J]. Lancet Neurol, 2014, 13(1): 44-58. [12] GU W, MILLER S, CHIU C Y. Clinical metagenomic next-generation sequencing for pathogen detection[J]. Annu Rev Pathol-Mech, 2019, 14:319-338. [13] KAJI N, OKAMOTO Y, TOKESHI M, et al. Nanopillar, nanoball, and nanofibers for highly efficient analysis of biomolecules[J]. Chem Soc Rev, 2010, 39(3): 948-956. [14] KIM D, LEE J Y, YANG J S, et al. The architecture of SARS-CoV-2 transcriptome[J]. Cell, 2020, 181(4): 914-921.e10. [15] EID J, FEHR A, GRAY J, et al. Real-time DNA sequencing from single polymerase molecules[J]. Science, 2009, 323(5910): 133-138. [16] LEVENE M J, KORLACH J, TURNER S W, et al. Zero-mode waveguides for single-molecule analysis at high concentrations[J]. Science, 2003, 299(5607): 682-686. [17] LARKIN J, FOQUET M, TURNER S W, et al. Reversible positioning of single molecules inside zero-mode waveguides[J]. Nano Lett, 2014, 14(10): 6023-6039. [18] JAIN M, KOREN S, MIGA K H, et al. Nanopore sequencing and assembly of a human genome with ultra-long reads[J]. Nat Biotechnol, 2018, 36(4): 338-345. [19] KILIANSKI A, ROTH P A, LIEM A T, et al. Use of unamplified RNA/cDNA-hybrid nanopore sequencing for rapid detection and characterization of RNA viruses[J]. Emerg Infect Dis, 2016, 22(8): 1448-1451. [20] RUSSELL J A, CAMPOS B, STONE J, et al. Unbiased strain-typing of arbovirus directly from mosquitoes using nanopore sequencing: a field-forward biosurveillance protocol[J]. Sci Rep-UK, 2018, 8(1): 5417. [21] WANG S, ZHAO Z, HAQUE F, et al. Engineering of protein nanopores for sequencing, chemical or protein sensing and disease diagnosis[J]. Curr Opin Biotech, 2018, 51:80-89. [22] OH S, LEE M K, CHI S W. Single-molecule-based detection of conserved influenza a virus RNA promoter using a protein nanopore[J]. ACS Sens, 2019, 4(11): 2849-2853. [23] GARALDE D R, SNELL E A, JACHIMOWICZ D, et al. Highly parallel direct RNA sequencing on an array of nanopores[J]. Nat Methods, 2018, 15(3): 201-206. [24] CRESSIOT B, GREIVE S J, MOJTABAVI M, et al. Thermostable virus portal proteins as reprogrammable adapters for solid-state nanopore sensors[J]. Nat Commun, 2018, 9(1): 4652. [25] BAFNA J A, SONI G V. Fabrication of low noise borosilicate glass nanopores for single molecule sensing[J]. PloS One, 2016, 11(6): e0157399. [26] GAROLI D, YAMAZAKI H, MACCAFERRI N, et al. Plasmonic nanopores for single-molecule detection and manipulation: toward sequencing applications[J]. Nano Lett, 2019, 19(11): 7553-62. [27] CHEN C, LI Y, KERMAN S, et al. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing[J]. Nat Commun, 2018, 9(1): 1733. [28] AHANGAR L E, MEHRGARDI M A. Amplified detection of hepatitis B virus using an electrochemical DNA biosensor on a nanoporous gold platform[J]. Bioelectrochemistry, 2017, 117:83-88. [29] TOLDR A, O′SULLIVAN C K, CAMP S M. Detecting Harmful algal blooms with isothermal molecular strategies[J]. Trends Biotechnol, 2019, 37(12): 1278-1281. [30] TOLDR A, O′SULLIVAN C K, DIOG NE J, et al. Detecting harmful algal blooms with nucleic acid amplification-based biotechnological tools[J]. Sci Total Environ, 2020, 749:141605. [31] NOTOMI T, OKAYAMA H, MASUBUCHI H, et al. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Res, 2000, 28(12): e63. [32] NAWATTANAPAIBOON K, KIATPATHOMCHAI W, SANTANIRAND P, et al. SPR-DNA array for detection of methicillin-resistant staphylococcus aureus (MRSA) in combination with loop-mediated isothermal amplification[J]. Biosens Bioelectron, 2015, 74:335-340. [33] CHEN W, YU H, SUN F, et al. Mobile Platform for multiplexed detection and differentiation of disease-specific nucleic acid sequences, using microfluidic loop-mediated isothermal amplification and smartphone detection[J]. Anal Chem, 2017, 89(21): 11219-11226. [34] BARNES L, HEITHOFF D M, MAHAN S P, et al. Smartphone-based pathogen diagnosis in urinary sepsis patients [J]. Ebiomedicine, 2018, 36:73-82. [35] PIEPENBURG O, WILLIAMS C H, STEMPLE D L, et al. DNA detection using recombination proteins[J]. PloS Biol, 2006, 4(7): e204. [36] DEL R O J S, SVOBODOVA M, BUSTOS P, et al. Electrochemical detection of Piscirickettsia salmonis genomic DNA from salmon samples using solid-phase recombinase polymerase amplification[J]. Anal Bioanal Chem, 2016, 408(30): 8611-8620. [37] DEL R O J S, LOBATO I M, MAYBORODA O, et al. Enhanced solid-phase recombinase polymerase amplification and electrochemical detection[J]. Anal Bioanal Chem, 2017, 409(12): 3261-3269. [38] TIAN J, CHU H, ZHANG Y, et al. TiO2 Nanoparticle-enhanced linker recombinant strand displacement amplification (LRSDA) for universal label-free visual bioassays[J]. ACS Appl Mater Interfaces, 2019, 11(50): 46504-46514. [39] REID M S, LE X C, ZHANG H. Exponential isothermal amplification of nucleic acids and assays for proteins, cells, small molecules, and enzyme activities: an EXPAR example[J]. Angew Chem Int Ed, 2018, 57(37): 11856-11866. [40] CAI R, ZHANG Z, CHEN H, et al. A versatile signal-on electrochemical biosensor for Staphylococcus aureus based on triple-helix molecular switch[J]. Sens Actuators B, 2021, 326: 128842. [41] GUO Q, YANG X, WANG K, et al. Sensitive fluorescence detection of nucleic acids based on isothermal circular strand-displacement polymerization reaction[J]. Nucleic Acids Res, 2009, 37(3): e20. [42] MURUGAN K, BABU K, SUNDARESAN R, et al. The revolution continues: newly discovered systems expand the CRISPR-Cas toolkit[J]. Mol Cell, 2017, 68(1): 15-25. [43] JINEK M, CHYLINSKI K, FONFARA I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. [44] ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299): 5573. [45] ZHANG H, LI Z, DACZKOWSKI C M, et al. Structural basis for the inhibition of CRISPR-Cas12a by anti-CRISPR proteins[J]. Cell Host Microbe, 2019, 25(6): 815-826. [46] PARDEE K, GREEN A A, TAKAHASHI M K, et al. Rapid, low-cost detection of Zika virus using programmable biomolecular components[J]. Cell, 2016, 165(5): 1255-1266. [47] HUANG M, ZHOU X, WANG H, et al. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection[J]. Anal Chem, 2018, 90(3): 2193-2200. [48] BATISTA A C, PACHECO L G C. Detecting pathogens with Zinc-Finger, TALE and CRISPR-based programmable nucleic acid binding proteins[J]. J Microbiol Meth, 2018, 152:98-104. [49] ZHANG Y, QIAN L, WEI W, et al. Paired design of dCas9 as a systematic platform for the detection of featured nucleic acid sequences in pathogenic strains[J]. ACS Synth Biol, 2017, 6(2): 211-216. [50] QIU X Y, ZHU L Y, ZHU C S, et al. Highly effective and low-cost microRNA detection with CRISPR-Cas9[J]. ACS Synth Biol, 2018, 7(3): 807-813. [51] YANG W, RESTREPO-PEREZ L, BENGTSON M, et al. Detection of CRISPR-dCas9 on DNA with solid-state nanopores[J]. Nano Lett, 2018, 18(10): 6469-6474. [52] LI S Y, CHENG Q X, LIU J K, et al. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA[J]. Cell Res, 2018, 28(4): 491-493. [53] CHEN J S, MA E, HARRINGTON L B, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436-439. [54] LI L, LI S, WU N, et al. HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation[J]. ACS Synth Biol, 2019, 8(10): 2228-2237. [55] DAI Y, SOMOZA R A, WANG L, et al. Exploring the trans-cleavage activity of CRISPR-Cas12a (cpf1) for the development of a universal electrochemical biosensor[J]. Angew Chem Int Ed, 2019, 58(48): 17399-173405. [56] SHMAKOV S, ABUDAYYEH O O, MAKAROVA K S, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems[J]. Mol Cell, 2015, 60(3): 385-397. [57] GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336): 438-442. [58] ABUDAYYEH O O, GOOTENBERG J S, ESSLETZBICHLER P, et al. RNA targeting with CRISPR- Cas13[J]. Nature, 2017, 550(7675): 280-284. [59] LI Y, LI S, WANG J, et al. CRISPR/Cas systems towards next-generation biosensing[J]. Trends Biotechnol, 2019, 37(7): 730-743. [60] GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J]. Science, 2018, 360(6387): 439-444. [61] KAZLAUSKIENE M, KOSTIUK G, VENCLOVAS Cˇ, et al. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems[J]. Science, 2017, 357(6351): 605-609. [62] MYHRVOLD C, FREIJE C A, GOOTENBERG J S, et al. Field-deployable viral diagnostics using CRISPR-Cas13[J]. Science, 2018, 360(6387): 444-448. [63] 盛楠, 马雪萍, 逄淑云, 等. 新型冠状病毒SARS-CoV-2核酸检测技术平台的研究进展[J]. 分析化学, 2020, 48(10):1279-1287. SHENG N, MA X P, PANG S Y, et al. Research progress of nucleic acid detection technology platforms for new coronavirus SARS-CoV-2[J]. Chinese J Anal Chem, 2020, 48(10):1279-1287 [64] ZHANG J, LI K, ZHENG L, et al. Improving detection efficiency of SARS-CoV-2 nucleic acid testing[J]. Front Cell Infect Microbiol, 2020, 10:558472. [65] ALFARAJ S H, AL-TAWFIQ J A, MEMISH Z A. Middle East respiratory syndrome coronavirus intermittent positive cases: implications for infection control[J]. Am J Infect Control, 2019, 47(3): 290-293. [66] MEREDITH L W, HAMILTON W L, WARNE B, et al. Rapid implementation of SARS-CoV-2 sequencing to investigate cases of health-care associated COVID-19: a prospective genomic surveillance study[J]. Lancet Infect Dis, 2020, 20(11): 1263-1271. [67] WOO C H, JANG S, SHIN G, et al. Sensitive fluorescence detection of SARS-CoV-2 RNA in clinical samples via one-pot isothermal ligation and transcription[J]. Nat Biomed Eng, 2020, 4(12): 1168-1179. [68] MOITRA P, ALAFEEF M, DIGHE K, et al. Selective Naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles[J]. ACS Nano, 2020, 14(6): 7617-7627. [69] XIONG E, JIANG L, TIAN T, et al. Simultaneous dual-gene diagnosis of SARS-CoV-2 based on CRISPR/Cas9-mediated lateral flow assay[J]. Angew Chem Int Ed, 2021,60(10): 5307-5315. [70] ARIZTI-SANZ J, FREIJE C A, STANTON A C, et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2[J]. Nat Commun, 2020, 11(1): 5921. [71] BROUGHTON J P, DENG X, YU G, et al. CRISPR-Cas12-based detection of SARS-CoV-2[J]. Nat Biotechnol, 2020, 38(7): 870-874. [72] DING X, YIN K, LI Z, et al. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay[J]. Nat Commun, 2020, 11(1): 4711. |