[1] Steele B C H,Heinzel A. Materials for Fuel-Cell Technologies[J]. Nature,2001,414(6861):345-352. [2] Ormerod R M. Solid Oxide Fuel Cells[J]. Chem Soc Rev,2003,32(1):17-18. [3] Shao Z P,Haile S M. A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells[J]. Mater Sustainable Energy,2011,431(9):255-258. [4] Duan C,Hook D,Chen Y,et al. Zr and Y Co-doped Perovskite as a Stable, High Performance Cathode for Solid Oxide Fuel Cells Operating Below 500 ℃[J]. Environ Sci,2017,10(1):176-182. [5] Lashtabeg A,Skinner S J. Solid Oxide Fuel Cells-A Challenge for Materials Chemists[J]. J Mater Chem,2006,16(31):3161-3170. [6] Liu Q,Dong X H,Xia G L,et al. A Novel Electrode Material for Symmetrical SOFCs[J]. Adv Mater,2010,22(48):5478-5482. [7] Dulli H,Dowben P A,Liou S H,et al. Surface Segregation and Restructuring of Colossal-Magnetoresistant Manganese Perovskites La0.65Sr0.35MnO3[J]. Phys Rev B,2000,62(22):R14629-R14632. [8] Cai Z,Kubicek M,Fleig J,et al. Chemical Heterogeneities on La0.6Sr0.4CoO3-delta Thin Films-correlations to Cathode Surface Activity and Stability[J]. Chem Mater,2012,24(6):1116-1127. [9] Lee W,Han J W,Chen Y,et al. Cation Size Mismatch and Charge Interactions Drive Dopant Segregation at the Surfaces of Manganite Perovskites[J]. J Am Chem Soc,2013,135(21):7909-7925. [10] Tellez H,Druce J,Kilner J A,et al. Relating Surface Chemistry and Oxygen Surface Exchange in LnBaCo2O5+δ Air Electrodes[J]. Chem Mater,2015,182:145-157. [11] Sase M,Hermes F,Yashiro K,et al. Enhancement of Oxygen Surface Exchange at the Hetero-interface of (La,Sr)CoO3/(La,Sr)2CoO4 with PLD-Layered Films[J]. J Electrochem Soc,2008,155(8):B793-B797. [12] Yoon J,Cho S,Kim J H,et al. Vertically Aligned Nanocomposite Thin Films as a Cathode/Electrolyte Interface Layer for Thin-Film Solid-Oxide Fuel Cells[J]. Adv Funct Mater,2009,19(24):3868-3873. [13] Crumlin E J,Mutoro E,Ahn S J,et al. Oxygen Reduction Kinetics Enhancement on a Heterostructured Oxide Surface for Solid Oxide Fuel Cells[J]. J Phys Chem Lett,2010,1(21):3149-3155. [14] Lynch M E,Yang L,Qin W,et al. Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ Durability and Surface Electrocatalytic Activity by La0.85Sr0.15MnO3±δ Investigated Using a New Test Electrode Platform[J]. Energy Environ Sci,2011,4(6):2249-2258. [15] Ma W,Kim J J,Tsvetkov N,et al. Vertically Aligned Nanocomposite La0.8Sr0.2CoO3/(La0.5Sr0.5)2CoO4 Cathodes-Electronic Structure, Surface Chemistry and Oxygen Reduction Kinetics[J]. J Mater Chem A,2015,3(1):207-219. [16] Choi H J,Bae K,Grieshammer S,et al. Surface Tuning of Solid Oxide Fuel Cell Cathode by Atomic Layer Deposition[J]. Adv Energy Mater,2018,8(33):1802506-1802514. [17] Sase M,Yashiro K,Sato K,et al. Enhancement of Oxygen Exchange at the Hetero Interface of (La,Sr)CoO3/(La,Sr)2CoO4 in Composite Ceramics[J]. Solid State Ionics,2008,178(35/36):1843-1852. [18] Han J W,Yildiz B. Mechanism for Enhanced Oxygen Reduction Kinetics at the (La,Sr)CoO3-δ/(La,Sr)2CoO4+δ Hetero-Interface[J]. Energy Environ Sci,2012,5(9):8598-8607. [19] Chen Y,Cai Z,Kuru Y,et al. Electronic Activation of Cathode Superlattices at Elevated Temperatures-Source of Markedly Accelerated Oxygen Reduction Kinetics[J]. Adv Energy Mater,2013,3(9):1221-1229. [20] Kushima A,Yildiz B.Oxygen Ion Diffusivity in Strained Yttria Stabilized Zirconia: Where is the Fastest Strain?[J]. J Mater Chem,2010,20(23):4809-4819. [21] Li X,Benedek N A. Enhancement of Ionic Transport in Complex Oxides Through Soft Lattice Modes and Epitaxial Strain[J]. Chem Mater,2015,27(7):2647-2652. [22] Halat D M,Dervişo ğlu R,Kim G,et al. Probing Oxide-Ion Mobility in the Mixed Ionic-Electronic Conductor La2NiO4+δ by Solid-State O-17 MAS NMR Spectroscopy[J]. J Am Chem Soc,2016,138(36):11958-11969. [23] Gu X K,Carneiro J S A,Samira S,et al. Efficient Oxygen Electrocatalysis by Nanostructured Mixed-Metal Oxides[J]. J Am Chem Soc,2018,140(26):8128-8137. [24] Xu S,Jacobs R,Morgan D. Factors Controlling Oxygen Interstitial Diffusion in the Ruddlesden-Popper Oxide La2-xSrxNiO4+δ[J]. Chem Mater,2018,30(20):7166-7177. [25] Peng B,Chen G,Wang T,et al. Hydride Reduced LaSrCoO4-δ as New Cathode Material for Ba(Zr0.1Ce0.7Y0.2)O3 Based Intermediate Temperature Solid Oxide Fuel Cells[J]. J Power Sources,2012,201:174(178. [26] Yashima M,Enoki M,Wakita T,et al. Structural Disorder and Diffusional Pathway of Oxide Ions in a Doped Pr2NiO4-Based Mixed Conductor[J]. J Am Chem Soc,2008,130(9):2762-2763. [27] Berger C,Egger A,Merkle R,et al. Oxygen Surface Exchange Kinetics of Pr2(Ni,Co)O4+δ Thin-Film Model Electrodes[J]. J Electrochem Soc,2019,166(14): F1088-F1095. [28] Tropin E,Ananyev M,Porotnikova N,et al. Oxygen Surface Exchange and Diffusion in Pr1.75Sr0.25Ni0.75Co0.25O4±δ[J]. Phys Chem Chem Phys,2019,21(9):4779-4790. [29] Pérez-Flores J C,Pérez-Coll D,García-Martín S,et al. A- and B-site Ordering in the A-Cation-Deficient Perovskite Series La2-xNiTiO6-δ (0≤x<0.20) and Evaluation as Potential Cathodes for Solid Oxide Fuel Cells[J]. Chem Mater,2013,25(12): 2484-2494. [30] Yamada A,Suzuki Y,Saka K,et al. Ruddlesden-Popper-Type Epitaxial Film as Oxygen Electrode for Solid-Oxide Fuel Cells[J]. Adv Mater,2008,20(21):4124-4138. [31] Huan Y,Chen S,Zeng R,et al. Intrinsic Effects of Ruddlesden-Popper-Based Bi Functional Catalysts for High-Temperature Oxygen Reduction and Evolution[J]. Adv Energy Mater,2019,9(29):1901573-1901581. [32] Duan Z,Yang M,Yan A,et al. Ba0.5Sr0.5Co0.8Fe0.2O3-δ as a Cathode for IT-SOFCs with a GDC Interlayer[J]. J Power Sources,2006,160(1):57-64. [33] Kim Y M,Kim-Lohsoontorn P,Bae J. Effect of Unsintered Gadolinium-Doped Ceria Buffer Layer on Performance of Metal-Supported Solid Oxide Fuel Cells Using Unsintered Barium Strontium Cobalt Ferrite Cathode[J]. J Power Sources,2010,195(19):6420-6427. [34] Ding D,Liu M,Liu Z,et al. Efficient Electro-catalysts for Enhancing Surface Activity and Stability of SOFC Cathodes[J]. Adv Energy Mater,2013,3(9):1149-1154. [35] Ding D,Li X,Lai S Y,et al. Enhancing SOFC Cathode Performance by Surface Modification Through Infiltration[J]. Energy Environ Sci,2014,7(2):552-575. [36] Chen Y,Chen Y,Ding D,et al. A Robust and Active Hybrid Catalyst for Facile Oxygen Reduction in Solid Oxide Fuel Cells[J]. Energy Environ Sci,2017,10(4):964-971. [37] Jacobson, A J. Materials for Solid Oxide Fuel Cells[J]. Chem Mater,2010,22(3):660-674. [38] Takeda Y,Kanno R,Noda M,et al. Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia[J]. J Electrochem Soc,1987,134(11):2656-2661. [39] Siebert E,Hammouche A,Kleitz M. Impedance Spectroscopy Analysis of La1-xSrxMnO3-Yttria-Stabilized Zirconia Electrode-Kinetics[J]. Electrochim Acta,1995,40(11):1741-1753. [40] Chen D,Ran R,Zhang K,et al. Intermediate-Temperature Electrochemical Performance of a Polycrystalline PrBaCo2O5+δ Cathode on Samarium-Doped Ceria Electrolyte[J]. J Power Sources,2009,188(1):96-105. [41] Chen H,Guo Z,Zhang L A,et al. Improving the Electrocatalytic Activity and Durability of the La0.6Sr0.4Co0.2Fe0.8O3-δ Cathode by Surface Modification[J]. ACS Appl Mater Interface,2018,10(46):39785-39793. [42] Mukherjee K,Hanyamizu Y,Kim C S,et al. Praseodymium Cuprate Thin Film Cathodes for Intermediate Temperature Solid Oxide Fuel Cells:Roles of Doping, Orientation, and Crystal Structure[J]. ACS Appl Mater Interface,2016,8(50):34295-34302. [43] Sun S,Zhang H,Pan M. Dynamic Simulation of Oxygen Transport Rates in Highly Ordered Electrodes for Proton Exchange Membrane Fuel Cells[J]. Fuel Cells,2015,15(3):456-462. [44] Meng J,Liu X,Yao C,et al. Bi-Doped La2ZnMnO6-δ and Relevant Bi-Deficient Compound as Potential Cathodes for Intermediate Temperature Solid Oxide Fuel Cells[J]. Solid State Ionics,2015,279:32-38. [45] Zhang L,Yao G,Song Z,et al. Effects of Pr-Deficiency on Thermal Expansion and Electrochemical Properties in Pr1-xBaCo2O5+δ Cathodes for IT-SOFCs[J]. Electrochim Acta,2016,212:522-534. |