[1] | Cui L,Wu J,Ju H.Nitrogen-Doped Porous Carbon Derived from Metal-Organic Gel for Electrochemical Analysis of Heavy-Metal Ion[J]. ACS Appl Mater Interfaces,2014,6(18):16210-16216. | [2] | Tan J Z,Nursam N M,Xia F,et al. High-Performance Coral Reef-like Carbon Nitrides:Synthesis and Application in Photocatalysis and Heavy Metal Ion Adsorption[J]. ACS Appl Mater Interfaces,2017,9(5):4540-4547. | [3] | Chen L Y,Ou C M,Chen W Y,et al. Synthesis of Photoluminescent Au ND-PNIPAM Hybrid Microgel for the Detection of Hg2+[J]. ACS Appl Mater Interfaces,2013,5(10):4383-4388. | [4] | Huang P J,Wang F,Liu J.Cleavable Molecular Beacon for Hg2+ Detection Based on Phosphorothioate RNA Modifications[J]. Anal Chem,2015,87(13):6890-6895. | [5] | Cui X,Zhu L,Wu J,et al. A Fluorescent Biosensor Based on Carbon Dots-Labeled Oligodeoxyribonucleotide and Graphene Oxide for Mercury(Ⅱ) Detection[J]. Biosens Bioelectron,2015,63(6):506-512. | [6] | Chen L,Lu L,Wang S,et al. Valence States Modulation Strategy for Picomole Level Assay of Hg2+ in Drinking and Environmental Water by Directional Self-assembly of Gold Nanorods[J]. ACS Sens,2017,2(6):781-788. | [7] | Hsu I H,Hsu T C,Sun Y C.Gold-Nanoparticle-Based Graphite Furnace Atomic Absorption Spectrometry Amplification and Magnetic Separation Method for Sensitive Detection of Mercuric Ions[J]. Biosens Bioelectron,2011,26(11):4605-4609. | [8] | Da S M,Paim A P,Pimentel M F,et al. Determination of Mercury in Rice by Cold Vapor Atomic Fluorescence Spectrometry After Microwave-Assisted Digestion[J]. Anal Chim Acta,2010,667(1):43-48. | [9] | Khatua S,Schmittel M.A Single Molecular Light-up Sensor for Quantification of Hg2+ and Ag+ in Aqueous Medium:High Selectivity Toward Hg2+ over Ag+ in a Mixture[J]. Org Lett,2013,15(17):4422-4425. | [10] | Hussain M M,Rahman M M,Arshad M N,et al. Hg2+ Sensor Development Based on (E)-N'-Nitrobenzylidene-Benzenesulfonohydrazide(NBBSH) Derivatives Fabricated on a Glassy Carbon Electrode with a Nafion Matrix[J]. ACS Omega,2017,2](2):420-431. | [11] | Chen F Y,Jiang S J.Slurry Sampling Flow Injection Chemical Vapor Generation Inductively Coupled Plasma Mass Spectrometry for the Determination of As, Cd, and Hg in Cereals[J]. J Agric Food Chem,2009,57(15):6564-6569. | [12] | Zhao T,Goodwin E D,Guo J,et al. An Advanced Architecture for Colloidal PbS Quantum Dot Solar Cells Exploiting a CdSe Quantum Dot Buffer Layer[J]. ACS Nano,2016,10(10):9267-9273. | [13] | Roelofs K E,Herron S M,Bent S F.Increased Quantum Dot Loading by pH Control Reduces Interfacial Recombination in Quantum-Dot-Sensitized Solar Cells[J]. ACS Nano,2015,9(8):8321-8334. | [14] | Agarwalla H,Mahajan P S,Sahu D,et al. A Switch-on NIR Probe for Specific Detection of Hg2+ Ion in Aqueous Medium and in Mitochondria[J]. Inorg Chem,2016,55(22):12052-12060. | [15] | Zheng M,Li Y,Liu S,et al. One-Pot to Synthesize Multifunctional Carbon Dots for Near Infrared Fluorescence Imaging and Photothermal Cancer Therapy[J]. ACS Appl Mater Interfaces,2016,8(36):23533-23541. | [16] | Xu X,Kai Z,Liang Z,et al. Aspirin-Based Carbon Dots, a Good Biocompatibility of Material Applied for Bioimaging and Anti-inflammation[J]. ACS Appl Mater Interfaces,1944,8(48):32706-32716. | [17] | Liu H,Ye T,Mao C.Fluorescent Carbon Nanoparticles Derived from Candle Soot[J]. Angew Chem Int Ed Engl,2007,46(34):6473-6475. | [18] | Bourlinos A B,Stassinopoulos A,Anglos D,et al. Photoluminescent Carbogenic Dots[J]. Chem Mater,2008,20(14):4539-4541. | [19] | Tian L,Ghosh D,Chen W,et al. Nanosized Carbon Particles from Natural Gas Soot[J]. Chem Mater,2009,21(13):2803-2809. | [20] | Ray S C,Saha A,Jana N R,et al. Fluorescent Carbon Nanoparticles:Synthesis, Characterization, and Bioimaging Application[J]. J Phys Chem C,2009,113(43):18546-18551. | [21] | Liu H,Ye T,Mao C.Fluorescent Carbon Nanoparticles Derived from Candle Soot[J]. Angew Chem Int Ed Engl,2007,46(34):6473-6475. | [22] | Huang H,Lv J J,Zhou D L,et al. One-Pot Green Synthesis of Nitrogen-Doped Carbon Nanoparticles as Fluorescent Probes for Mercury Ions[J]. RSC Adv,2013,3(44):21691-21696. | [23] | Liu L Q,Li Y F,Zhan L,et al. One-Step Synthesis of Fluorescent Hydroxyls-Coated Carbon Dots with Hydrothermal Reaction and Its Application to Optical Sensing of Metal Ions[J]. Sci China Chem,2011,54(8):1342-1347. | [24] | Shen J,Zhu Y,Yang X,et al. Graphene Quantum Dots:Emergent Nanolights for Bioimaging, Sensors, Catalysis and Photovoltaic Devices[J]. Chem Commun,2012,43(29):3686-3699. | [25] | Li L,Ji J,Fei R,et al. A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots[J]. Adv Funct Mater,2012,22(14):2971-2979. | [26] | Chakraborti H,Sinha S,Ghosh S,et al. Interfacing Water Soluble Nanomaterials with Fluorescence Chemosensing:Graphene Quantum Dot to Detect Hg2+, in 100% Aqueous Solution[J]. Mater Lett,2013,97(2):78-80. | [27] | Qin X,Lu W,Asiri A M,et al. Microwave-assisted Rapid Green Synthesis of Photoluminescent Carbon Nanodots from Flour and Their Applications for Sensitive and Selective Detection of Mercury(Ⅱ) Ions[J]. Sens Actuators B,2013,184(8):156-162. | [28] | Zhang Y L,Wang L,Zhang H C,et al. Graphitic Carbon Quantum Dots as a Fluorescent Sensing Platform for Highly Efficient Detection of Fe3+ Ions[J]. RSC Adv,2013,3(11):3733-3738. | [29] | Udhayakumari D,Velmathi S.Azo Linked Polycyclic Aromatic Hydrocarbons-Based Dual Chemosensor for Cu2+ and Hg2+ Ions[J]. Ind Eng Chem Res,2015,54(14):3541-3547. | [30] | Lin W C,Wu C Y,Liu Z H,et al. A New Selective Colorimetric and Fluorescent Sensor for Hg2+ and Cu2+.Based on a Thiourea Featuring a Pyrene Unit[J]. Talanta,2010,81(4/5):1209-1215. | [31] | Martí nez R,Zapata F,Caballero A,et al. 2-Aza-1,3-butadiene Derivatives Featuring an Anthracene or Pyrene Unit:Highly Selective Colorimetric and Fluorescent Signaling of Cu2+ Cation[J]. Org Lett,2006,8(15):3235-3238. | [32] | Ye H,Ge F,Chen X C,et al. A New Probe for Fluorescent Recognition of Hg2+, in Living Cells and Colorimetric Detection of Cu2+, in Aqueous Solution[J]. Sens Actuators B,2013,182(3):273-279. | [33] | Jun S K,Myung G C,Ki C S,et al. Ratiometric Determination of Hg2+ Ions Based on Simple Molecular Motifs of Pyrene and Dioxaoctanediamide[J]. Org Lett,2007,9(6):1129-1132. | [34] | Liu Y,Ouyang Q,Li H,et al. Turn-On Fluoresence Sensor for Hg2+ in Food Based on FRET Between Aptamers-Functionalized Upconversion Nanoparticles and Gold Nanoparticles[J]. J Agric Food Chem,2018,66(24):6188-6195. | [35] | Zhang Y M,Shi B B,Peng Z,et al. A Highly Selective Dual-Channel Hg2+, Chemosensor Based on an Easy to Prepare Double Naphthalene Schiff Base[J]. Sci China Chem,2013,56(5):612-618. | [36] | Moon S Y,Cha N R,Kim Y H,et al. New Hg2+-Selective Chromo- and Fluoroionophore Based upon 8-Hydroxyquinoline[J]. J Org Chem,2004,69(1):181-183. | [37] | Dai B N,Cao Q Y,Wang L,et al. A New Naphthalene-Containing Triazolophane for Fluorescence Sensing of Mercury(Ⅱ) Ion[J]. Inorg Chim Acta,2014,423:163-167. |
|