[1] | FANG Wentao,DENG Aiping,REN Zhenli,et al. Research Progress on Quality Evaluation of Salviae Miltiorrhizae Radix et Rhizoma(Danshen)[J]. China J Chinese Mater Med,2018,43(6):1077-1085(in Chinese). 方文韬,邓爱平,任振丽,等. 丹参品质研究评价进展[J]. 中国中药杂志,2018,43(6):1077-1085. | [2] | SUN Yangzhao,CHEN Yang,LAN Hong,et al. Source, Origin and Control Technology Path Analysis of Mercury Pollution in China[J]. Environ Chem,2013,32(6):937-942(in Chinese). 孙阳昭,陈扬,蓝虹,等. 中国汞污染的来源、成因及控制技术路径分析[J]. 环境化学,2013,32(6):937-942. | [3] | HE Chang.Analysis on Excessive Heavy Metal Problem of Chinese Medica Exports to EU from Perspective of UK Ban[J]. Chinese Tradit Herbal Drugs,2016,47(10):1820-1824(in Chinese). 何畅. 从英国禁令分析中药出口欧盟的重金属超标问题及对策[J]. 中草药,2016,47(10):1820-1824. | [4] | LUO Hongli,HU Yichen,LUO Jiaoyang,et al. Research Advances on Detecting Heavy Metals and Harmful Elements Based on Fluorescent Probe Quantum Dots[J]. Chinese Tradit Herbal Drugs,2015,46(18):2809-2815(in Chinese). 罗红丽,胡一晨,骆骄阳,等. 荧光探针量子点检测重金属与有害元素的研究进展及应用于中药材安全性评价的展望[J]. 中草药,2015,46(18):2809-2815. | [5] | LI Fengwu,BAI Xue,LIU Shuo.Determination of Various Heavy Metal Elements in Radix Salviae Miltiorrhizae by ICP-AES Method[J]. Shaanxi J Tradit Chinese Med,2016,37(11):1545-1546(in Chinese). 李锋武,白雪,刘硕. ICP-AES法测定丹参药材中多种重金属元素的含量[J]. 陕西中医,2016,37(11):1545-1546. | [6] | XUE Yanli,XUE Xiaojian.Five Different Origin of Salvia Miltiorrhiza on the Determination of Heavy Metal Content in Medicine[J]. China Pharmacist,2009,12(9):1321-1322(in Chinese). 薛艳丽,薛小建. 5种不同产地丹参药材中重金属含量的测定[J]. 中国药师,2009,12(9):1321-1322. | [7] | LI Xiuping,LI Haiyan,XIE Jianming,et al. Determination of Two Kinds of Heavy Metals of Pb and Cd in Salvia Miltiorrhiza by Atomic Absorption Spectrometry[J]. Chinese Med Pharm,2016,6(9):50-52(in Chinese). 黎秀平,李海燕,谢健鸣,等. 原子吸收法测定丹参中Pb、Cd镉两种重金属的含量[J]. 中国医药科学,2016,6(9):50-52. | [8] | LIN Mingyue,LIANG Xiuqing.Determination of Arsenic and Mercury Content in Salvia Miltiorrhizaby Microwave Digestion-Atomic Fluorescence Spectrometry[J]. J Chinese Med Mat,2016,39(5):1108-1110(in Chinese). 林明越,梁秀清. 微波消解-原子荧光光谱法测定丹参中砷、汞的含量[J]. 中药材,2016,39(5):1108-1110. | [9] | Liu Y M,Zhang F P,Jiao B Y,et al. Automated Dispersive Liquid-Liquid Microextraction Coupled to High Performance Liquid Chromatography-Cold Vapour Atomic Fluorescence Spectroscopy for the Determination of Mercury Species in Natural Water Samples[J]. J Chromatogr A,2017,1493(1):1-9. | [10] | Brent R N,Wines H,Luther J,et al. Validation of Handheld X-Ray Fluorescence for in Situ Measurement of Mercury in Soils[J]. J Environ Chem Eng,2017,5(1):768-776. | [11] | Han A,Yang Y Y,Zhang Q,et al. Electrochemistry and Electrochemiluminescence of Copper Metal Cluster[J]. J Electroanal Chem,2017,795(1):116-122. | [12] | Ono A,Togashi H.Highly Selective Oligonucleotide-Based Sensor for Mercury(Ⅱ) in Aqueous Solutions[J]. Angew Chem,2004,43(33):4300-4302. | [13] | Florian S,Bernhard V,Artur H.Redox-Switchable Supramolecular Graft Polymer Formation via Ferrocene Cyclodextrin Assembly[J]. Macromol Rapid Comm,2014,35(14):1293-1300. | [14] | Li Y,Qi H,Peng Y,et al. Electrogenerated Chemiluminescence Aptamer-Based Method for the Determination of Thrombin in Corporating Quenching of Tris(2,2'-bipyridine) Ruthenium by Ferrocene[J]. Electrochem Commun,2008,10(9):1322-1325. | [15] | Wang X Y,Dong P,Yun W,et al. Detection of T4 DNA Ligase Using a Solid-State Electrochemiluminescence Biosensing Switch Based on Ferrocene-Labeled Molecular Beacon[J]. Talanta,2010,80(5):1643-1647. | [16] | Gadelle A,Defaye J.Selective Halogenation at Primary Positions of Cyclomaltooligosaccharides and a Synthesis of Per-3,6-anhydro Cyclomaltooligosaccharides[J]. Angew Chem Int Ed,1991,30(1):78-80. | [17] | Liu J,Ong W,Roman E,et al. Cyclodextrin-Modified Gold Nanospheres[J]. Langmuir,2000,16(7):3000-3002. | [18] | Al-Hinaai M M,Kyaw H H,Al-Harthi S H,et al. An Innovative ECL Sensor Based on AuNPs Linker for Ru(bpy)$^{2+}_{3}$ Molecules Doped onto an Alkaline Pretreated Poly(4-aminodiphenylamine) Film[J]. Sens Actuators B,2018,257(1):460-468. | [19] | Huang J,Gao X,Jia J,et al. Graphene Oxide-Based Amplified Fluorescent Biosensor for Hg2+ Detection Through Hybridization Chain Reactions[J]. Anal Chem,2014,86(6):3209-3215. | [20] | Wei H,Wang Z,Yang L,et al. Lysozyme-Stabilized Gold Fluorescent Cluster:Synthesis and Application as Hg2+ Sensor[J]. Analyst,2010,135(6):1406-1410. | [21] | Stobiecka M,Molinero A A,Chałupa A,et al. Mercury/Homocysteine Ligation-Induced ON/OFF-Switching of a T-T Mismatch-Based Oligonucleotide Molecular Beacon[J]. Anal Chem,2012,84(11):4970?4978. | [22] | Zhu Z,Su Y,Li J,et al. Highly Sensitive Electrochemical Sensor for Mercury(Ⅱ) Ions by Using a Mercury-Specific Oligonucleotide Probe and Gold Nanoparticle-Based Amplification[J]. Anal Chem,2009,81(18):7660-7666. | [23] | Mor-Piperberg G,Tel-Vered R,Elbaz J,et al. Nanoengineered Electrically Contacted Enzymes on DNA Scaffolds:Functional Assemblies for the Selective Analysis of Hg(Ⅱ) Ions[J]. J Am Chem Soc,2010,132(20):6878-6879. | [24] | Park J W,Park S J,Kwon O S,et al. High-Performance Hg2+ FET-type Sensors Based on Reduced Graphene Oxide-Polyfuran Nanohybrids[J]. Analyst,2014,139(16):3852-3855. | [25] | Li D,Wieckowska A,Willner I.Optical Analysis of Hg(Ⅱ) Ions by Oligonucleotide-Gold-Nanoparticle Hybrids and DNA-Based Machines[J]. Angew Chemie,2008,47(21):3927-3931. | [26] | Huy G D,Zhang M,Zuo P,et al. Multiplexed Analysis of Silver(Ⅰ) and Mercury(Ⅱ) Ions Using Oligonucletide-Metal Nanoparticle Conjugates[J]. Analyst,2011,136(16):3289-3294. | [27] | Yang Y K,Yook K J,Tae J.A Rhodamine-Based Fluorescent and Colorimetric Chemodosimeter for the Rapid Detection of Hg(Ⅱ) Ions in Aqueous Media[J]. J Am Chem Soc,2005,127(48):16760-16761. | [28] | Jiang Z,Fan Y,Chen M,et al. Resonance Scattering Spectral Detection of Trace Hg(Ⅱ) Using Aptamer-Modified Nanogold as Probe and Nanocatalyst[J]. Anal Chem,2009,81(13):5439-5445. | [29] | Ren W,Zhang Y,Chen H G,et al. Ultrasensitive Label-Free Resonance Rayleigh Scattering Aptasensor for Hg2+ Using Hg2+-Triggered Exonuclease III-Assisted Target Recycling and Growth of G-Wires for Signal Amplication[J]. Anal Chem,2016,88(2):1385-1390. |
|