[1] | Sripad S,Viswanathan V.Evaluation of Current, Future, and Beyond Li-Ion Batteries for the Electrification of Light Commercial Vehicles:Challenges and Opportunities[J]. J Electrochem Soc,2017,164(11):E3635-E3646. | [2] | Zhang K,Han X P,Hu Z,et al. Nanostructured Mn-Based Oxides for Electrochemical Energy Storage and Conversion[J]. Chem Soc Rev,2015,44(3):699-728. | [3] | Larcher D,Tarascon J.Towards Greener and More Sustainable Batteries for Electrical Energy Storage[J]. Nat Chem,2015,7(1):19-29. | [4] | Al Sadat W I,Archer L A. The O2-assisted Al/CO2 Electrochemical Cell:A System for CO2 Capture/Conversion and Electric Power Generation[J]. Sci Adv,2016,2(7):e1600968. | [5] | Amine K,Kanno R,Tzeng Y.Rechargeable Lithium Batteries and Beyond:Progress, Challenges, and Future Directions[J]. MRS Bull,2014,39(5):395-401. | [6] | Armand M,Tarascon J M.Building Better Batteries[J]. Nature,2008,451(7179):652-657. | [7] | Fergus J W.Recent Developments in Cathode Materials for Lithium Ion Batteries[J]. J Power Sources,2010,195(4):939-954. | [8] | Goodenough J B,Kim Y.Challenges for Rechargeable Li-Ion Batteries[J]. Chem Mater,2010,229(3):587-603. | [9] | Zhang K,Hu Z,Tao Z L,et al. Inorganic & Organic Materials for Rechargeable Li Batteries with Multi-electron Reaction[J]. China Mater,2014,57(1):42-58. | [10] | Shi Y,Peng L L,Ding Y,et al. Nanostructured Conductive Polymers for Advanced Energy Storage[J]. Chem Soc Rev,2015,44(19):6684-6696. | [11] | HUANG Weiei,YAN Bing,SUN Huimin,et al. Organic Cathode Materials for Sodiumion Batteries[J]. J Yanshan Univ,2018,42(3):189-198(in Chinese). 黄苇苇,闫冰,孙会民,等. 有机正极材料在钠二次电池中的应用[J]. 燕山大学学报,2018,42(3):189-198. | [12] | Yokoji T,H Matsubara,M Satoh. Rechargeable Organic Lithium-Ion Batteries Using Electron-Deficient Benzoquinones as Positive-Electrode Materials with High Discharge Voltages[J]. J Mater Chem A,2014,2(45):19347-19354. | [13] | Lv M X,Zhang F,Wu Y F,et al. Heteroaromatic Organic Compound with Conjugated Multi-carbonyl as Cathode Material for Rechargeable Lithium Batteries[J]. Sci Rep,2016,6(4):2045-2322. | [14] | Emanuelsson R,Sterby M,Strømme M,et al. An All-Organic Proton Battery[J]. J Am Chem Soc,2017,139(13):4828-4834. | [15] | Luo Z Q,Liu L,Zhao Q,et al. An Insoluble Benzoquinone-Based Organic Cathode for Use in Rechargeable Lithium-Ion Batteries[J]. J Am Chem Soc,2017,129(41):12561-12565. | [16] | Huang W W,Zhu Z Q,Wang L J,et al. Quasi-Solid-State Rechargeable Lithium-Ion Batteries with a Calix[4]quinone Cathode and Gel Polymer Electrolyte[J]. Angew Chem Int Ed,2013,125(35):9162-9166. | [17] | Häupler B,Wild A,Schubert U S.Carbonyls:Powerful Organic Materials for Secondary Batteries[J]. Adv Energy Mater,2015,5(11):32-41. | [18] | Zheng S B,Sun H M,Yan B,et al. High-Capacity Organic Electrode Material Calix[4]quinone/CMK-3 Nanocomposite for Lithium Batteries[J]. Sci China Mater,2018:1-6. | [19] | Zheng S B,Hu J Y,Huang W W.Inorganic-Organic Nanocomposites Calix[4]quinone (C4Q)/CMK-3 as Cathode Materials for High-Capacity Sodium Batteries[J]. Inorg Chem Front,2017,4(11):1806-1812. | [20] | Zhu Z Q,Chen J.Review-Advanced Carbon-Supported Organic Electrode Materials for Lithium(Sodium)-Ion Batteries[J]. J Electrochem Soc,2015,162(14):A2393-A2405. | [21] | Song Z P,Zhou H.Towards Sustainable and Versatile Energy Storage Devices:An Overview of Organic Electrode Materials[J]. Energ Environ Sci,2013,6(8):2280-2301. | [22] | Yabuuchi N,Kubota K,Dahbi M,et al. Research Development on Sodium-Ion Batteries[J]. Chem Rev,2014,114(23):11636-11682. | [23] | Xiang X D,Zhang K,Chen J.Recent Advances and Prospects of Cathode Materials for Sodium-Ion Batteries[J]. Adv Mater,2015,27(36):5343-5348. | [24] | Yao Y,Wu F.Naturally Derived Nanostructured Materials from Biomass for Rechargeable Lithium/Sodium Batteries[J]. Nano Energy,2015,17(17):91-103. | [25] | Kim Y Z,Wu W,Chun S E,et al. Biologically Derived Melanin Electrodes in Aqueous Sodium-Ion Energy Storage Devices[J]. Proc Natl Acad Sci USA,2013,110(52):20912-20917. | [26] | Zhao Q,Huang W W,Luo Z Q,,et al. Forecasting. Forecasting and Monitoring Active Sites of Sustainable Quinone Electrodes for High-capacity and Safe Aqueous Zinc Batteries[J]. Sci Adv,2018,4(3):eaao1761. | [27] | Pan B,Zhou D,Huang J,et al. 2,5-Dimethoxy-1,4-Benzoquinone(DMBQ) as Organic Cathode for Rechargeable Magnesium-Ion Batteries[J]. J Electrochem Soc,2016,163(3):A580-A583. | [28] | Ebbesen T W,Lezec H J,Hiura H,et al. Electrical Conductivity of Individual Carbon Nanotubes[J]. Nature,1996,382(6586):54-56. | [29] | Ishii Y,Tashiro K,Hosoe K,et al. Electrochemical Lithium-Ion Storage Properties of Quinone Molecules Encapsulated in Single-Walled Carbon nanotubes[J]. Phys Chem Chem Phys,2016,18(15):10411-10418. | [30] | Wu H P,Wang K,Meng Y N,et al. An Organic Cathode Material Based on a Polyimide/CNT Nanocomposite for Lithium Ion Batteries[J]. J Mater Chem A,2013,1(21):6366-6372. |
|