[1] Yamasaki H,Makihata Y,Fukunaga K. Efficient Phenol Removal of Waste Water from Phenolic Resin Plants Using Crosslinked Cyclodextrin Particles[J]. J Chem Technol Biotechnol,2006,81(7):1271-1276.[2] Xie T,Liu Q,Shi Y. Simultaneous Determination of Positional Isomers of Benzenediols by Capillary Zone Electrophoresis with Square Wave Amperometric Detection[J]. J Chromatogr A,2006,1109(2):317-321.[3] Asan A,Isildak I. Determination of Major Phenolic Compounds in Water by Reversed-phase Liquid Chromatography after Precolumn Derivatization with Benzoyl Chloride[J]. J Chromatogr A,2003,988(1):145-149.[4] Moldoveanu S C,Kiser M. Gas Chromatography/mass Spectrometry Versus Liquid Chromatography/Fluorescence Detection in the Analysis of Phenols in Mainstream Cigarette Smoke[J]. J Chromatogr A,2007,1141(1):90-97.[5] Li S F,Li X Z,Xu J,et al. Flow-injection Chemiluminescence Determination of Polyphenols Using Luminol NaIO4 Gold Nanoparticles System[J]. Talanta,2008,75(1):32-37.[6] Wang Y R,Chen H W. Integrated Capillary Electrophoresis Amperometric Detection Microchip with Replaceable Microdisk Working Electrode Ⅱ.Influence of Channel Cross-sectional Area on the Separation and Detection of Dopamine and Catechol[J]. J Chromatogr A,2005,1080(2):192-198.[7] Pistonesi M F,Di Nezio M S,Centurión M E,et al. Determination of Phenol, Resorcinol and Hydroquinone in Air Samples by Synchronous Fluorescence Using Partial Least-squares(PLS)[J]. Talanta,2006,69(5):1265-1268.[8] Wang L T,Zhang Y,Du Y L,et al. Simultaneous Determination of Catechol and Hydroquinone Based on Poly(diallyldimethylammonium chloride) Functionalized Graphene Modified Glassy Carbon Electrode[J]. J Solid State Electrochem,2012,16(4):1323-1331.[9] Saleh Ahammad A J,Mahbubur Rahman M,Xu G R,et al. Highly Sensitive and Simultaneous Determination of Hydroquinone and Catechol at Poly(thionine) Modified Glassy Carbon Electrode at Poly(thionine) Modified Glassy Carbon Electrode[J]. Electrochim Acta,2011,56(14):5266-5271.[10] Tan Y Y,Guo X X,Zhang J H,et al. Amperometric Catechol Biosensor Based on Polyaniline-Polyphenol Oxidase[J]. Biosens Bioelectron,2010,25(7):1681-1687.[11] Gan T,Sun J Y,Huang K J,et al. A Graphene Oxide-mesoporous MnO2 Nanocomposite Modified Glassy Carbon Electrode as a Novel and Efficient Voltammetric Sensor for Simultaneous Determination of Hydroquinone and Catechol[J]. Sens Actuators B,2013,177(2):412-418.[12] Yuan D H,Chen S H,Hu F X,et al. Non-enzymatic Amperometric Sensor of Catechol and Hydroquinone Using Pt-Au-organosilica@chitosan Composites Modified Electrode[J]. Sens Actuators B,2012,168(7):193-199.[13] Guo Q H,Huang J S,Chen P Q,et al. Simultaneous Determination of Catechol and Hydroquinone Using Electrospun Carbon Nanofibers Modified Electrode[J]. Sens Actuators B,2012,163(1):179-185.[14] Liu Z M,Wang Z L,Cao Y Y,et al. High Sensitive Simultaneous Determination of Hydroquinone and Catechol Based on Graphene/BMIMPF6 Nanocomposite Modified Electrode[J]. Sens Actuators B,2011,157(2):540-546.[15] Ma X M,Liu Z N,Qiu C C,et al. Simultaneous Determination of Hydroquinone and Catechol Based on Glassy Carbon Electrode Modified with Gold-graphene Nanocomposite[J]. Microchim Acta,2013,180(5):461-468.[16] Cao X,Cai X L,Feng Q H,et al. Ultrathin CdSe Nanosheets:Synthesis and Application in Simultaneous Determination of Catechol and Hydroquinone[J]. Anal Chim Acta,2012,752(10):101-105.[17] Zhang R Y,Wang X M. One Step Synthesis of Multiwalled Carbon Nanotube/gold Nanocomposites for Enhancing Electrochemical Response[J]. Chem Mater,2007,19(5):976 978.[18] Yang T,Zhou N,Zhang Y C,et al. Synergistically Improved Sensitivity for the Detection of Specific DNA Sequences Using Polyaniline Nanofibers and Multi-walled Carbon Nanotubes Composites[J]. Biosens Bioelectron,2009,24(7):2165-2170 .[19] Wang J,Lin Y H. Functionalized Carbon Nanotubes and Nanofibers for Biosensing[J]. Trends Anal Chem,2008,27(9):619-626.[20] Zhou M,Guo J,Guo L P,et al. Electrochemical Sensing Platform Based on the Highly Ordered Mesoporous Carbon-fullerene System[J]. Anal Chem,2008,80(21):4642-4650.[21] Gooding J J. Nanostructuring Electrodes with Carbon Nanotubes:a Review on Electrochemistry and Applications for Sensing[J]. Electrochim Acta,2005,50(15):3049-3060.[22] Shao Y Y,Wang J,Wu H,et al. Graphene Based Electrochemical Sensors and Biosensors:A Review[J]. Electroanalysis,2010,22(10):1027-1036.[23] Chen X,Zhu J,Xi Q,et al. A High Performance Electrochemical Sensor for Acetaminophen Based one Single-walled Carbon Nanotube graphene Nanosheet Hybrid Films[J]. Sens Actuators B,2012,161(1):648-654. |