
应用化学 ›› 2025, Vol. 42 ›› Issue (1): 95-106.DOI: 10.19894/j.issn.1000-0518.240262
杨剑峰1,2, 李艳玲1(), 韩经露1,2, 李松松1,2, 廖伍平1,2,3(
)
收稿日期:
2024-08-13
接受日期:
2024-12-19
出版日期:
2025-01-01
发布日期:
2025-01-24
通讯作者:
李艳玲,廖伍平
基金资助:
Jian-Feng YANG1,2, Yan-Ling LI1(), Jing-Lu HAN1,2, Song-Song LI1,2, Wu-Ping LIAO1,2,3(
)
Received:
2024-08-13
Accepted:
2024-12-19
Published:
2025-01-01
Online:
2025-01-24
Contact:
Yan-Ling LI,Wu-Ping LIAO
About author:
wpliao@ciac.ac.cn;Supported by:
摘要:
将(2-乙基己基胺基)甲基膦酸单-2-乙基己基酯(HEHAMP,H2L2)浸渍到大孔树脂Pre-XAD-16上制得了浸渍树脂(SIRs-HEHAMP),研究了在硫酸介质中SIRs-HEHAMP对钪的吸附性能,考察了反应时间、溶液酸度、硫酸氢根离子浓度、树脂用量以及温度等因素对钪吸附的影响,发现SIRs-HEHAMP浸渍树脂对Sc3+的吸附量随着反应时间的增加而逐渐增大; 在高酸度范围下,SIRs-HEHAMP浸渍树脂对Sc3+的吸附率随着酸度的增大而略有降低,而在pH值范围内对Sc3+的吸附率几乎没有影响; 在吸附过程中硫酸氢根没有参与配位; 温度对Sc3+的吸附几乎没有影响; SIRs-HEHAMP吸附Sc3+的过程符合准二级动力学模型; 测定了浸渍树脂对钪的饱和负载量(以Sc2O3计)为36.29 mg/g,并对SIRs-HEHAMP浸渍树脂、HEHAMP萃取剂以及支撑基质Pre-XAD-16进行了红外光谱与TG-DSC表征,结果表明,HEHAMP成功浸渍到支撑基质Pre-XAD-16上。 将SIRs-HEHAMP浸渍树脂用于从模拟赤泥浸出液中吸附和分离钪。 Sc3+的吸附率为51.71%,TiO2+吸附率为42.50%,几乎不吸附Al3+,Fe3+和稀土离子吸附率均在20%以下,Sc/Ti分离系数为1.45; 加入质量分数为6%的H2O2时,SIRs-HEHAMP浸渍树脂对Sc3+吸附率提升到63.17%,TiO2+和Fe3+的吸附率下降,其余金属离子基本不吸附,Sc/Ti分离系数提高至6.94,表明该浸渍树脂可以应用于从赤泥浸出液中分离回收钪。
中图分类号:
杨剑峰, 李艳玲, 韩经露, 李松松, 廖伍平. (2-乙基己基胺基)甲基膦酸单-2-乙基己基酯浸渍树脂对钪的选择性吸附及应用[J]. 应用化学, 2025, 42(1): 95-106.
Jian-Feng YANG, Yan-Ling LI, Jing-Lu HAN, Song-Song LI, Wu-Ping LIAO. Selective Adsorption of Scandium by (2-Ethylhexylamino) Methyl Phosphonic Acid Mono-2-Ethylhexyl Ester Impregnated Resin and Its Application[J]. Chinese Journal of Applied Chemistry, 2025, 42(1): 95-106.
图2 水相酸度、硫酸氢根离子浓度对Sc3+吸附/萃取的影响: (A)高酸度下Sc3+吸附率随酸度改变的变化规律; (B)低酸度下Sc3+吸附率随酸度改变的变化规律; (C)水相pH值对Sc3+萃取率的影响; (D)硫酸氢根离子浓度变化对Sc3+吸附率的影响A. c(Sc3+)=0.003 mol/L, V=10 mL, m(SIRs-3)=200 mg, reaction time=60 min; B. c(Sc3+)=0.001 mol/L, V=10 mL, m(SIRs-3)=100 mg, reaction time=60 min; C. c(HEHAMP)=0.003 mol/L, c(Sc3+)=0.001 mol/L, Vorg=5 mL, Vaq=5 mL, reaction time=30 min; D. c(Sc3+)=0.005 mol/L, V=10 mL, m(SIRs-3)=100 mg, pH=2, reaction time=60 min. * Vorg is volume of organic phase, Vaq is volume of aqueous phase
Fig.2 Effect of the solution acidity of the solution on the Sc3+ adsorption ((A) high acidity and (B) low acidity); (C) Effect of the aqueous acidity on the extraction of Sc3+; (D) Effect of HSO4- concentration on the Sc3+ adsorption
图4 不同萃取剂负载量的SIRs-HEHAMP浸渍树脂对Sc3+离子的吸附(以氧化物计)m(resins)=10 g (resins represent Pre-XAD-16, SIRs-1, SIRs-2, SIRs-3), c(Sc3+)=0.05 mol/L, c(H2SO4)=0.44 mol/L,V=20 mL, room temperature, reaction time=60 min
Fig.4 Adsorption of Sc3+ ions (calculated by oxides) by SIRs-HEHAMP impregnated resin with different extractant loading
Impregnated resins | Extractant | Extractant loading/(mmol·g-1) | Adsorption capacity a /(mg·g-1) | Acidity/(mol·L-1 H2SO4) | Equilibrium time/min | Ref. |
---|---|---|---|---|---|---|
TP-272 | Cyanex272 | - | 17.01 | pH=2.5 | 720 | [ |
TRPO/SiO2-P | Cyanex923 | 0.89 | 20.40 | 5 | 120 | [ |
HDEHP/SiO2-P | P204 | 0.803 | 21.55 | 5 | 5 | [ |
SIRs-HEHAMP | HEHAMP | 0.72 | 36.29 | 0.44 | 60 | This work |
表1 不同浸渍树脂在硫酸介质中对Sc3+的吸附性能
Table 1 Adsorption property of different impregnated resin for Sc3+ in sulfuric acid medium
Impregnated resins | Extractant | Extractant loading/(mmol·g-1) | Adsorption capacity a /(mg·g-1) | Acidity/(mol·L-1 H2SO4) | Equilibrium time/min | Ref. |
---|---|---|---|---|---|---|
TP-272 | Cyanex272 | - | 17.01 | pH=2.5 | 720 | [ |
TRPO/SiO2-P | Cyanex923 | 0.89 | 20.40 | 5 | 120 | [ |
HDEHP/SiO2-P | P204 | 0.803 | 21.55 | 5 | 5 | [ |
SIRs-HEHAMP | HEHAMP | 0.72 | 36.29 | 0.44 | 60 | This work |
图5 (a) HEHAMP、(b) Pre-XAD-16、(c)SIRs-HEHAMP浸渍树脂和(d) Sc-SIRs的FT-IR谱图
Fig.5 FT-IR spectra of (a) HEHAMP, (b) Pre-XAD-16, (c) SIRs-HEHAMP and (d) Sc-SIRs
图6 Pre-XAD-16(A)、HEHAMP(B)以及SIRs-HEHAMP浸渍树脂(C)的TG-DSC曲线
Fig.6 TG-DSC curves of Pre-XAD-16 (A), HEHAMP (B) and HEHAMP impregnated resin(SIRs-HEHAMP) (C)
图7 温度对Sc3+吸附率的影响c(Sc3+)=0.003 mol/L, c(H2SO4)=0.44 mol/L, V=10 mL, m(SIRs-3)=200 mg, reaction time=60 min
Fig.7 Effect of temperature on the Sc3+ adsorption
图8 反应时间对钪吸附量影响的准二级动力学模拟c(Sc3+)=0.005 mol/L, pHini=1.31, V=10 mL, m(SIRs-3)=186 mg
Fig.8 Effect of reaction time on the Sc3+ adsorption modeled by pseudo-second-order model
Pseudo-first-order model parameters | Pseudo-second-order model parameters | ||||
---|---|---|---|---|---|
q(e,cal)/(mg·g-1) | k1/min-1 | R2 | q(e,cal)/(mg·g-1) | k2/(g·mg-1·min-1) | R2 |
5.366 | 73.52 | 0.825 | 14.49 | 2.653×10-3 | 0.998 |
表2 SIRs-HEHAMP浸渍树脂吸附Sc3+的准一级动力学方程和准二级动力学方程模拟参数
Table 2 Kinetic parameters of the pseudo-first-order kinetic equation and the pseudo-second-order kinetic equation for adsorption of Sc3+ by SIRs-HEHAMP impregnated resin
Pseudo-first-order model parameters | Pseudo-second-order model parameters | ||||
---|---|---|---|---|---|
q(e,cal)/(mg·g-1) | k1/min-1 | R2 | q(e,cal)/(mg·g-1) | k2/(g·mg-1·min-1) | R2 |
5.366 | 73.52 | 0.825 | 14.49 | 2.653×10-3 | 0.998 |
图9 SIRs-HEHAMP浸渍树脂对模拟赤泥硫酸浸出液中金属离子的吸附
Fig.9 Adsorption of each metal ions in simulated sulfuric acid leaching solution of red mud by SIRs-HEHAMP impregnated resin
图10 过氧化氢对赤泥硫酸浸出模拟液中金属离子吸附率的影响
Fig.10 Effect of hydrogen peroxide on the adsorption rate of each metal ion in simulated sulfuric acid leaching solution of red mud
1 | 林河成. 金属钪的应用与市场[J]. 世界有色金属, 2012(11): 58-59. |
LIN H C. Application and market of scandium[J]. World Nonferrous Met, 2012(11): 58-59. | |
2 | 王祝堂. 铝-钪合金的性能与应用[J]. 铝加工, 2012(3): 4-14. |
WANG Z T. Property and application of Al-Sc alloy[J]. Aluminium Fabrication, 2012(3): 4-14. | |
3 | 柏振海, 罗兵辉, 谭敦强. Al-Mg-(Sc)合金退火组织和性能[J]. 中南工业大学学报(自然科学版), 2002(6): 600-603. |
BAI Z H, LUO B H, TAN D Q. Tempering on the microstructure and properties of Al-Mg-(Sc) alloy[J]. J Central South Univ (Nat Sci Ed), 2002(6): 600-603. | |
4 | LU J H, LI S S, TAO S W, et al. Efficient CO2 electrolysis with scandium doped titanate cathode[J]. Int J Hydrogen Energy, 2017, 42: 8197-8206. |
5 | 熊瑞, 周正东, 郭诗琪, 等. 稀土钪元素在发酵工业中的应用[J]. 食品与发酵科技, 2017, 53(4): 92-93. |
XIONG R, ZHOU Z D, GUO S Q, et al. Applicability of rare earth element scandium to fermentation industries[J]. Food Fermentation Sci Technol, 2017, 53(4): 92-93. | |
6 | PELLISSIER H. Recent developments in enantioselective scandium-catalyzed transformations[J]. Coordination Chem Rev, 2016, 313: 1-37. |
7 | WANG W W, PRANOLO Y, CHENG C Y. Metallurgical processes for scandium recovery from various resources: a review[J]. Hydrometallurgy, 2011, 108(1/2): 100-108. |
8 | RAMASAMY D L, PUHAKKA V, REPO E, et al. Selective separation of scandium from iron, aluminium and gold rich wastewater using various amino and non-amino functionalized silica gels-a comparative study[J]. J Cleaner Prod, 2018, 170: 890-901. |
9 | ONGHENA B, BORRA C R, VAN GERVEN T, et al. Recovery of scandium from sulfation-roasted leachates of bauxite residue by solvent extraction with the ionic liquid betainium bis(trifluoromethylsulfonyl)imide[J]. Sep Purif Technol, 2017, 176: 208-219. |
10 | LIU H, LIU H L, NIE C X, et al. Comprehensive treatments of tungsten slags in China: a critical review[J]. J Environ Manage, 2020, 270(110927): 1-12. |
11 | LIAO C S, JIA J T, ZHANG Y, et al. Extraction of scandium from ion-adsorptive rare earth deposit by naphthenic acid[J]. J Alloys Compounds, 2001, 323(C): 833-837. |
12 | LE W H, KUANG S T, ZHANG Z F, et al. Selective extraction and recovery of scandium from sulfate medium by Cextrant 230[J]. Hydrometallurgy, 2018, 178: 54-59. |
13 | PENG X J, LI L, ZHANG M, et al. Preparation of ultra-high pure scandium oxide with crude product from titanium white waste acid[J]. J Rare Earths, 2023, 41: 764-770. |
14 | ZHANG W, ZHU H, LIU S F, et al. Scandium recovery from ion-adsorption rare earth concentrate with HEHEHP as extractant[J]. J Central South Univ, 2021, 28: 679-689. |
15 | SALMAN A D, JUZSAKOVA T, JALHOOM M G, et al. A selective hydrometallurgical method for scandium recovery from a real red mud leachate: a comparative study[J]. Environ Pollut, 2022, 308(119596): 1-16. |
16 | 王俊莲, 孙春宝, 徐盛明. 基于稀土分离的萃淋树脂制备与应用研究[J]. 中国稀土学报, 2015, 33(2): 129-145. |
WANG J L, SUN C B, XU S M. Advances in preparation and application of solid-liquid extraction resins based on rare earth separation[J]. J Chin Soc Rare Earths, 2015, 33(2): 129-145. | |
17 | WANG J L, XIE M Y, MA J, et al. Extractant(2,3-dimethylbutyl)(2,4,4′-trimethylpentyl) phosphinic acid (INET-3) impregnated onto XAD-16 and its extraction and separation performance for heavy rare earths from chloride media[J]. J Rare Earths, 2017, 35(12): 1239-1247. |
18 | BAO S X, HAWKER W, VAUGHAN J. Scandium loading on chelating and solvent impregnated resin from sulfate solution[J]. Solvent Extra Ion Exch, 2017, 36: 100-113. |
19 | YU Q, NING S Y, ZHANG W, et al. Recovery of scandium from sulfuric acid solution with a macro porous TRPO/SiO2-P adsorbent[J]. Hydrometallurgy, 2018, 181: 74-81. |
20 | ADONIS S, OOSTHUYSEN T. Evaluation of scandium sorption using modified Amberlite XAD-4 resin[J]. Monatshefte Für Chem-Chem Monthly, 2022, 153: 1185-1196. |
21 | ZHANG R, KHAN S, AZIMI G. Microstructured silicon substrates impregnated with bis(2,4,4-trimethylpentyl) phosphinic acid for selective scandium recovery[J]. Appl Surface Sci, 2023, 622(156852): 1-15. |
22 | ZHAO Q, ZHANG Z F, LI Y L, et al. Solvent extraction and separation of rare earths from chloride media using α-aminophsphonic acid extractant HEHAMP[J]. Solvent Extra Ion Exch, 2018, 36(2): 136-149. |
23 | CHEN L Y, DENG B C, KUANG S T, et al. Efficient extraction and separation of heavy rare earths from chloride medium with N,N′-di(2-ethylhexyl)aminomethyl phosphonic acid mono-2-ethylhexyl ester[J]. Hydrometallurgy, 2023, 22(106173): 1-9. |
24 | ZHANG W, YU S, ZHANG S, et al. Separation of scandium from the other rare earth elements with a novel macro-porous silica-polymer based adsorbent HDEHP/SiO2-P[J]. Hydrometallurgy, 2019, 185: 117-124. |
25 | DAMINESCU D, DUTEANU N, CIOPEC M, et al. Adsorption of scandium ions by amberlite XAD7HP polymeric adsorbent loaded with tri-n-octylphosphine oxide[J]. Molecules, 2024, 29(7): 1578. |
26 | SUN X Q, JI Y, HU F C, et al. The inner synergistic effect of bifunctional ionic liquid extractant for solvent extraction[J]. Talanta, 2010, 81: 1877-1883. |
27 | YIN S H, WU W Y, BIAN X, et al. Effect of complexing agent lactic acid on the extraction and separation of Pr(Ⅲ)/Ce(Ⅲ) with di-(2-ethylhexyl) phosphoric acid[J]. Hydrometallurgy, 2013, 131/132: 133-137. |
28 | 刘丰五, 刘玉坤. 氯甲基化苯乙烯-二乙烯基苯共聚体的红外光谱研究[J]. 河南科学, 2001, 19(1): 56-58. |
LIU F W, LIU Y K. IR spectroscopic study on chloromethylated styrene-divinylbenzene copolymer[J]. Henan Sci, 2001, 19(1): 56-58. | |
29 | NASEEM R, TAHIR S S. Removal of Pb(Ⅱ) from aqueous/acidic solutions by using bentonite as an adsorbent[J]. Water Res, 2001, 35: 3982-3986. |
30 | 邱森, 刘美玭, 蒋小岗, 等. 离子液浸渍树脂对稀土吸附性能的研究[J]. 稀土, 2019, 40(2): 142-147. |
QIU S, LIU M P, JIANG X G, et al. The adsorption of lonic liquid impregnated resin for rare earth[J]. Chin Rare Earths, 2019, 40(2): 142-147. | |
31 | 王春. 借助手持技术探究外界条件对三价铁离子催化过氧化氢分解的影响[J]. 化学教育(中英文), 2022, 43(9): 86-89. |
WANG C. Effect of external conditions on decomposition of hydrogen peroxide catalyzed by ferric ion by hand held technology[J]. Chin J Chem Educ, 2022, 43(9): 86-89. | |
32 | WANG L J, WANG Y, CUI L, et al. A sustainable approach for advanced removal of iron from CFA sulfuric acid leach liquor by solvent extraction with P507[J]. Sep Purif Technol, 2020, 251(117371): 1-10. |
[1] | 刘汉邦, 郝文月, 郭俊辉, 刘昶, 王凤来, 彭绍忠. 高硅LTA型分子筛的合成及应用研究进展[J]. 应用化学, 2024, 41(9): 1248-1258. |
[2] | 王兴刚, 秦静雯, 郑晓明, 颉林, 李薇. 改性火山石对水中氨氮的去除效果分析[J]. 应用化学, 2024, 41(8): 1193-1201. |
[3] | 任艳娇, 徐荣声, 王萍, 孙冬, 耿万东, 张海永. 乙二酸四乙酸二钠盐改性枸杞杆生物炭对亚甲基蓝吸附性能[J]. 应用化学, 2024, 41(7): 1035-1046. |
[4] | 张建锋, 吴辉勇, 杨良嵘. 盐湖卤水萃取法提锂的研究进展[J]. 应用化学, 2024, 41(6): 800-812. |
[5] | 张守村, 闫雪垠, 宋阳华, 李卓敏. CO2刺激响应球型水凝胶的制备及在蛋白质分离中的应用[J]. 应用化学, 2024, 41(6): 870-877. |
[6] | 李远杰, 范冰冰, 张君丽, 周艳梅. 氨基酸离子液体在能量存储和生物质资源化中的研究进展[J]. 应用化学, 2024, 41(3): 391-404. |
[7] | 张涛, 李思莹, 李俊乐, 邵思羽, 吴传栋, 凌梅, 吕东伟, 王威. 颗粒状碳酸氧镧去除水体中氟的性能[J]. 应用化学, 2024, 41(2): 297-307. |
[8] | 梁兴毅, 李亚, 荀京天, 张巍巍, 金长子, 王锐, 仇丹, 何宇鹏. 再生纤维素微球的制备及其吸附亚甲基蓝和叶酸负载[J]. 应用化学, 2024, 41(10): 1445-1456. |
[9] | 徐一, 林梦瑶, 宫晓群. 多色比色法在生物传感平台的研究进展[J]. 应用化学, 2024, 41(1): 3-20. |
[10] | 邢思阳, 于飞, 马杰. 电容去离子过渡金属基电极设计及应用研究进展[J]. 应用化学, 2023, 40(9): 1215-1232. |
[11] | 臧志飞, 梁杰, 习本军, 彭春雪, 刘渊, 王晨晔, 王朵. 草甘膦废液处理及资源化利用研究进展[J]. 应用化学, 2023, 40(9): 1233-1244. |
[12] | 王梦瑶, 高美珍, 石琪, 董晋湘. 基于甲苯模板合成的ZIF-93及其对1,3-丙二醇和2,3-丁二醇的吸附分离性能[J]. 应用化学, 2023, 40(9): 1302-1311. |
[13] | 江凤浩, 洪瀚, 姜伯玮, 苏朝晖. 基于温敏性N,N-二甲基丙烯酰胺/N-异丙基丙烯酰胺无规共聚物的毛细管无胶电泳筛分介质[J]. 应用化学, 2023, 40(9): 1312-1321. |
[14] | 元宁, 马洁, 张晋玲, 张建胜. 蒸气辅助合成PCN-6(M)双金属有机框架材料及其CH4和CO2吸附性能[J]. 应用化学, 2023, 40(6): 896-903. |
[15] | 郝晨丽, 丁庆伟, 贾世昌, 毛泱博, 王松柏, 马骏. 硫辛酸修饰钛酸纳米管吸附亚甲基蓝的性能[J]. 应用化学, 2023, 40(5): 749-757. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||