
应用化学 ›› 2025, Vol. 42 ›› Issue (2): 168-181.DOI: 10.19894/j.issn.1000-0518.240226
• 综合评述 • 上一篇
收稿日期:
2024-07-25
接受日期:
2024-12-09
出版日期:
2025-02-01
发布日期:
2025-03-14
通讯作者:
王立世,江焕峰
基金资助:
Si-Wei CHEN, Li-Shi WANG(), Huan-Feng JIANG(
)
Received:
2024-07-25
Accepted:
2024-12-09
Published:
2025-02-01
Online:
2025-03-14
Contact:
Li-Shi WANG,Huan-Feng JIANG
About author:
jianghf@scut.edu.cnSupported by:
摘要:
烟酰胺单核苷酸(NMN)是一种自然存在的生物活性核苷酸,还是人体内必不可少的辅酶烟酰胺腺嘌呤二核苷酸(NAD+/NADH)的合成前体,被认为是极具潜力的抗衰老因子。 对NMN进行全面研究不仅有助于提供延缓衰老的方法,还可能给脑损伤、心脏损伤、肝损伤、糖尿病肾病、脓毒症、致盲疾病和抑郁症等疾病带来新的治疗机会。 本文介绍了NMN的抗衰老机制,并从抗衰和医疗2个角度梳理了其在不同领域的应用。 重点论述了国内外现有的NMN检测手段,包括酶偶联反应法、电化学分析法、定量核磁共振法、液相色谱及液相色谱-质谱法和毛细管电泳法等,并对不同方法的线性范围、检测限和回收率等参数进行对比。 最后,讨论了NMN研究在作用机制、实际应用和检测分析3个方面所面临的挑战以及未来的发展方向。
中图分类号:
陈思维, 王立世, 江焕峰. 烟酰胺单核苷酸的抗衰老机制、应用及检测研究进展[J]. 应用化学, 2025, 42(2): 168-181.
Si-Wei CHEN, Li-Shi WANG, Huan-Feng JIANG. Research Advances of Anti-Aging Mechanism, Application and Detection of Nicotinamide Mononucleotide[J]. Chinese Journal of Applied Chemistry, 2025, 42(2): 168-181.
Year | Working electrode | Linear range/(mol·L-1) | Limit of detection/(mol·L-1) | Ref. |
---|---|---|---|---|
2005 | Edge plane pyrolytic graphite electrode | 2.3×10-6~3.6×10-5 | 3.3×10-7 | [ |
2006 | Poly(luminol)/flavin adenine dinucleotide/GCE | - | - | [ |
2006 | Nordihydroguaiaretic acid/flavin adenine dinucleotide/GCE | - | - | [ |
2007 | Poly(p-aminobenzene sulfonic acid)/flavin adenine dinucleotide/GCE | 1.0×10-5~3.0×10-4 | 1.0×10-6 | [ |
2007 | NADH oxidase/prussian blue/SPE | 1.0×10-6~4.0×10-4 | 1.1×10-7 | [ |
2008 | 2,3,5,6-Tetrachloro-1,4-benzoquinone/MWCNTs/edge plane pyrolytic graphite electrode | 5.0×10-7~2.2×10-3 | 1.5×10-7 | [ |
2009 | Graphite/poly(methylmethacrylate) composite electrode | 4.0×10-6~5.6×10-3 | 3.5×10-6 | [ |
2009 | Poly(brilliant cresyl blue)/SWCNTs/GCE | 3.0×10-6~1.042×10-4 | 1.0×10-6 | [ |
2009 | Au nanoparticles/GCE | 1.25×10-6~3.08×10-4 | 2.5×10-7 | [ |
2011 | MWCNTs/Pd nanoparticles/poly(3,4-ethylenedioxypyrrole)/GCE | 1.0×10-6~1.3×10-2 | 1.8×10-7 | [ |
2014 | Nitrogen-doped graphene/gold electrode | 1.0×10-6~3.0×10-2 | 3.0×10-7 | [ |
2014 | Ionic liquid/NiO nanoparticles modified carbon paste electrode | 3.0×10-8~9.0×10-4 | 9.0×10-9 | [ |
2016 | SWCNTs covalently functionalized with polytyrosine/GCE | 1.5×10-7~8.3×10-5 | 7.9×10-9 | [ |
2016 | Ethylenediaminetetraacetic acid/polyethylenimine/activated graphene oxide/GCE | 5.0×10-8~5.0×10-4 | 2.0×10-8 | [ |
2017 | Au-Ag nanoparticles/poly(L-cysteine)/reduced graphene oxide/GCE | 8.3×10-8~1.1×10-3 | 9.0×10-9 | [ |
2018 | Rosmarinic acid/screen-printed carbon electrode | 1.9×10-5~2.2×10-4 | 5.6×10-6 | [ |
2018 | Oxidized MWCNTs/graphite screen-printed electrode | 4.0×10-6~3.5×10-5 | 1.0×10-6 | [ |
2020 | Au-Copper oxide nanoparticles/carbon ceramic electrode | 1.0×10-6~2.9×10-5 | 9.0×10-8 | [ |
2020 | 3-Aminophenylboronic acid/reduced graphene oxide/GCE | 5.0×10-8~1.0×10-5 | 2.6×10-8 | [ |
2022 | 4'-Mercapto-N-phenylquinone diamine/SPE | 1.6×10-5~1.0×10-3 | 3.5×10-6 | [ |
2024 | F, S-Doped carbon dots/copper oxide nanoparticles/screen-printed carbon electrode | 2.0×10-8~4.0×10-6 | 2.0×10-8 | [ |
表1 电化学分析法检测NADH的应用 (Continued from the previous page)
Table 1 Application of electrochemical detection of NADH
Year | Working electrode | Linear range/(mol·L-1) | Limit of detection/(mol·L-1) | Ref. |
---|---|---|---|---|
2005 | Edge plane pyrolytic graphite electrode | 2.3×10-6~3.6×10-5 | 3.3×10-7 | [ |
2006 | Poly(luminol)/flavin adenine dinucleotide/GCE | - | - | [ |
2006 | Nordihydroguaiaretic acid/flavin adenine dinucleotide/GCE | - | - | [ |
2007 | Poly(p-aminobenzene sulfonic acid)/flavin adenine dinucleotide/GCE | 1.0×10-5~3.0×10-4 | 1.0×10-6 | [ |
2007 | NADH oxidase/prussian blue/SPE | 1.0×10-6~4.0×10-4 | 1.1×10-7 | [ |
2008 | 2,3,5,6-Tetrachloro-1,4-benzoquinone/MWCNTs/edge plane pyrolytic graphite electrode | 5.0×10-7~2.2×10-3 | 1.5×10-7 | [ |
2009 | Graphite/poly(methylmethacrylate) composite electrode | 4.0×10-6~5.6×10-3 | 3.5×10-6 | [ |
2009 | Poly(brilliant cresyl blue)/SWCNTs/GCE | 3.0×10-6~1.042×10-4 | 1.0×10-6 | [ |
2009 | Au nanoparticles/GCE | 1.25×10-6~3.08×10-4 | 2.5×10-7 | [ |
2011 | MWCNTs/Pd nanoparticles/poly(3,4-ethylenedioxypyrrole)/GCE | 1.0×10-6~1.3×10-2 | 1.8×10-7 | [ |
2014 | Nitrogen-doped graphene/gold electrode | 1.0×10-6~3.0×10-2 | 3.0×10-7 | [ |
2014 | Ionic liquid/NiO nanoparticles modified carbon paste electrode | 3.0×10-8~9.0×10-4 | 9.0×10-9 | [ |
2016 | SWCNTs covalently functionalized with polytyrosine/GCE | 1.5×10-7~8.3×10-5 | 7.9×10-9 | [ |
2016 | Ethylenediaminetetraacetic acid/polyethylenimine/activated graphene oxide/GCE | 5.0×10-8~5.0×10-4 | 2.0×10-8 | [ |
2017 | Au-Ag nanoparticles/poly(L-cysteine)/reduced graphene oxide/GCE | 8.3×10-8~1.1×10-3 | 9.0×10-9 | [ |
2018 | Rosmarinic acid/screen-printed carbon electrode | 1.9×10-5~2.2×10-4 | 5.6×10-6 | [ |
2018 | Oxidized MWCNTs/graphite screen-printed electrode | 4.0×10-6~3.5×10-5 | 1.0×10-6 | [ |
2020 | Au-Copper oxide nanoparticles/carbon ceramic electrode | 1.0×10-6~2.9×10-5 | 9.0×10-8 | [ |
2020 | 3-Aminophenylboronic acid/reduced graphene oxide/GCE | 5.0×10-8~1.0×10-5 | 2.6×10-8 | [ |
2022 | 4'-Mercapto-N-phenylquinone diamine/SPE | 1.6×10-5~1.0×10-3 | 3.5×10-6 | [ |
2024 | F, S-Doped carbon dots/copper oxide nanoparticles/screen-printed carbon electrode | 2.0×10-8~4.0×10-6 | 2.0×10-8 | [ |
Detection method | Chromatographic column | Composition of mobile phase | Linear range/(mol·L-1) | Limit of quantitation/(mol·L-1) | Limit of detection/(mol·L-1) | Recovery/% | RSD/% | Ref. |
---|---|---|---|---|---|---|---|---|
HPLC-UV | ZORBAX Eclipse Plus C18(4.6 mm×250 mm,5 μm) | Methanol and KH2PO4 | - | - | - | - | - | [ |
HPLC-UV | Xtimate C18 (4.6 mm×250 mm,5 μm) | KH2PO4 and acetonitrile | 1.5×10-3~6.0×10-3 | 1.5×10-8 | 3.0×10-9 | 99.2~101.2 | 0.44 | [ |
HPLC-FLD | Discovery C18 (250 mm×4.6 mm,5 μm) | Phosphate buffer and acetonitrile | 8.0×10-12~2.5×10-9 | - | - | - | - | [ |
LC-MS | Atlantis dC18 (150 mm×2.1 mm,3 μm) | Ammonium formate and methanol | 1.0×10-13~1.0×10-12 | 2.0×10-13 | - | 114 | 3.6 | [ |
LC-MS | Atlantis HILIC (150 mm×1.0 mm,3 μm) | Ammonium acetate and acetonitrile | 5.0×10-8~1.0×10-4 | 5.0×10-13 | - | - | 9.0 | [ |
LC-MS | Shim-pack VP-ODS (150 L×2.0 mm,5 μm) | Methanol and acetic acid | 4.0×10-10~6.8×10-7 | 4.0×10-10 | 2.0×10-10 | 86.6~108 | 3.4 | [ |
UPLC-MS/MS | Intrada amino acid column (100 mm×3.0 mm,3 μm) | Acetonitrile containing formic acid and acetonitrile/water containing ammonium formate | 1.5×10-9~3.0×10-7 | 6.0×10-10 | 3.0×10-10 | - | 3.2 | [ |
UPLC-MS/MS | ACQUITY UPLC HSS T3 (2.1 mm×100 mm,1.8 μm) | Formic acid and methanol | 4.1×10-9~4.1×10-6 | 3.0×10-9 | 9.0×10-10 | 77.6 | 3.6 | [ |
UHPLC-MS/MS | Discovery C18 (250 mm×4.6 mm, 5 μm) | Ammonium acetate and methanol | 2.0×10-8~2.0×10-6 | 3.5×10-11(mol/g of tissue) | 1.2×10-11 (mol/g of tissue) | 66.3~87.0 | - | [ |
UHPLC-MS/MS | InfinityLab Poroshell 120 EC-C18 (3.0 mm×150 mm,2.7 μm) | Ammonium acetate and methanol | Plasma 5.7×10-12~3.0×10-5;Liver 2.9×10-9~7.5×10-5;Blood 3.0×10-7~4.8×10-5 | Plasma 6.1×10-11; Liver 1.2×10-11; Blood 1.2×10-11 | - | 79.0~98.0 | 3.3~15 | [ |
表2 HPLC检测NMN的应用
Table 2 Application of HPLC in the detection of NMN
Detection method | Chromatographic column | Composition of mobile phase | Linear range/(mol·L-1) | Limit of quantitation/(mol·L-1) | Limit of detection/(mol·L-1) | Recovery/% | RSD/% | Ref. |
---|---|---|---|---|---|---|---|---|
HPLC-UV | ZORBAX Eclipse Plus C18(4.6 mm×250 mm,5 μm) | Methanol and KH2PO4 | - | - | - | - | - | [ |
HPLC-UV | Xtimate C18 (4.6 mm×250 mm,5 μm) | KH2PO4 and acetonitrile | 1.5×10-3~6.0×10-3 | 1.5×10-8 | 3.0×10-9 | 99.2~101.2 | 0.44 | [ |
HPLC-FLD | Discovery C18 (250 mm×4.6 mm,5 μm) | Phosphate buffer and acetonitrile | 8.0×10-12~2.5×10-9 | - | - | - | - | [ |
LC-MS | Atlantis dC18 (150 mm×2.1 mm,3 μm) | Ammonium formate and methanol | 1.0×10-13~1.0×10-12 | 2.0×10-13 | - | 114 | 3.6 | [ |
LC-MS | Atlantis HILIC (150 mm×1.0 mm,3 μm) | Ammonium acetate and acetonitrile | 5.0×10-8~1.0×10-4 | 5.0×10-13 | - | - | 9.0 | [ |
LC-MS | Shim-pack VP-ODS (150 L×2.0 mm,5 μm) | Methanol and acetic acid | 4.0×10-10~6.8×10-7 | 4.0×10-10 | 2.0×10-10 | 86.6~108 | 3.4 | [ |
UPLC-MS/MS | Intrada amino acid column (100 mm×3.0 mm,3 μm) | Acetonitrile containing formic acid and acetonitrile/water containing ammonium formate | 1.5×10-9~3.0×10-7 | 6.0×10-10 | 3.0×10-10 | - | 3.2 | [ |
UPLC-MS/MS | ACQUITY UPLC HSS T3 (2.1 mm×100 mm,1.8 μm) | Formic acid and methanol | 4.1×10-9~4.1×10-6 | 3.0×10-9 | 9.0×10-10 | 77.6 | 3.6 | [ |
UHPLC-MS/MS | Discovery C18 (250 mm×4.6 mm, 5 μm) | Ammonium acetate and methanol | 2.0×10-8~2.0×10-6 | 3.5×10-11(mol/g of tissue) | 1.2×10-11 (mol/g of tissue) | 66.3~87.0 | - | [ |
UHPLC-MS/MS | InfinityLab Poroshell 120 EC-C18 (3.0 mm×150 mm,2.7 μm) | Ammonium acetate and methanol | Plasma 5.7×10-12~3.0×10-5;Liver 2.9×10-9~7.5×10-5;Blood 3.0×10-7~4.8×10-5 | Plasma 6.1×10-11; Liver 1.2×10-11; Blood 1.2×10-11 | - | 79.0~98.0 | 3.3~15 | [ |
1 | NADEESHANI H, LI J, YING T, et al. Nicotinamide mononucleotide (NMN) as an anti-aging health product-promises and safety concerns[J]. J Adv Res, 2022, 37: 267-278. |
2 | MILLS K F, YOSHIDA S, STEIN L R, et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice[J]. Cell Metab, 2016, 24(6): 795-806. |
3 | NIU K M, BAO T, GAO L, et al. The impacts of short-term NMN supplementation on serum metabolism, fecal microbiota, and telomere length in pre-aging phase[J]. Front Nutr, 2021, 8: 756243. |
4 | YOSHINO M, YOSHINO J, KAYSER B D, et al. Nicotinamide mononucleotide increases muscle insulin sensitivity in prediabetic women[J]. Science, 2021, 372(6547): 1224-1229. |
5 | LIU L, SU X, QUINN W J, et al. Quantitative analysis of NAD synthesis-breakdown fluxes[J]. Cell Metab, 2018, 27(5): 1067-1080. |
6 | ZEIDLER J D, CHINI C C S, KANAMORI K S, et al. Endogenous metabolism in endothelial and immune cells generates most of the tissue vitamin B3 (nicotinamide)[J]. iScience, 2022, 25(11): 105431. |
7 | ZHU X H, LU M, LEE B Y, et al. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences[J]. Proc Natl Acad Sci USA, 2015, 112(9): 2876-2881. |
8 | FLETCHER R S, RATAJCZAK J, DOIG C L, et al. Nicotinamide riboside kinases display redundancy in mediating nicotinamide mononucleotide and nicotinamide riboside metabolism in skeletal muscle cells[J]. Mol Metab, 2017, 6(8): 819-832. |
9 | GROZIO A, SOCIALI G, STURLA L, et al. CD73 protein as a source of extracellular precursors for sustained NAD biosynthesis in FK866-treated tumor cells[J]. J Biol Chem, 2013, 288(36): 25938-25949. |
10 | VERDIN E. NAD+ in aging, metabolism, and neurodegeneration[J]. Science, 2015, 350(6265): 1208-1213. |
11 | CAMACHO-PEREIRA J, TARRAGÓ M G, CHINI C C S, et al. CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism[J]. Cell Metab, 2016, 23(6): 1127-1139. |
12 | GROZIO A, MILLS K F, YOSHINO J, et al. Slc12a8 is a nicotinamide mononucleotide transporter[J]. Nat Metab, 2019, 1(7): 47-57. |
13 | BENAYOUN B A, POLLINA E A, BRUNET A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability[J]. Nat Rev Mol Cell Biol, 2015, 16(10): 593-610. |
14 | LUO C, DING W, ZHU S, et al. Nicotinamide mononucleotide administration amends protein acetylome of aged mouse liver[J]. Cells, 2022, 11(10): 1654. |
15 | PELEG S, FELLER C, LADURNER A G, et al. The metabolic impact on histone acetylation and transcription in ageing[J]. Trends Biochem Sci, 2016, 41(8): 700-711. |
16 | BI S J, JIANG X Y, JI Q Z, et al. The sirtuin-associated human senescence program converges on the activation of placenta-specific gene PAPPA[J]. Dev Cell, 2024, 59(8): 991-1009. |
17 | SATOH A, IMAI S I. Systemic regulation of mammalian ageing and longevity by brain sirtuins[J]. Nat Commun, 2014, 5: 4211. |
18 | MOUCHIROUD L, HOUTKOOPER R H, MOULLAN N, et al. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling[J]. Cell, 2013, 154(2): 430-441. |
19 | DAS A, HUANG G X, BONKOWSKI M S, et al. Impairment of an endothelial NAD+-H2S signaling network is a reversible cause of vascular aging[J]. Cell, 2018, 173(1): 74-89. |
20 | LU L, TANG L, WEI W S, et al. Nicotinamide mononucleotide improves energy activity and survival rate in an in vitro model of Parkinson's disease[J]. Exp Ther Med, 2014, 8(3): 943-950. |
21 | CHANDRASEKARAN K, CHOI J, ARVAS M I, et al. Nicotinamide mononucleotide administration prevents experimental diabetes-induced cognitive impairment and loss of hippocampal neurons[J]. Int J Mol Sci, 2020, 21(11): 3756. |
22 | GOMES A P, PRICE N L, LING A J Y, et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging[J]. Cell, 2013, 155(7): 1624-1638. |
23 | LEE C F, CHAVEZ J D, GARCIA-MENENDEZ L, et al. Normalization of NAD+ redox balance as a therapy for heart failure[J]. Circulation, 2016, 134(12): 883-894. |
24 | PEEK C B, AFFINATI A H, RAMSEY K M, et al. Circadian clock NAD+ cycle drives mitochondrial oxidative metabolism in mice[J]. Science, 2013, 342(6158): 1243417. |
25 | UDDIN G M, YOUNGSON N A, SINCLAIR D A, et al. Head to head comparison of short-term treatment with the NAD+ precursor nicotinamide mononucleotide (NMN) and 6 weeks of exercise in obese female mice[J]. Front Pharmacol, 2016, 7: 258. |
26 | LONG A N, OWENS K, SCHLAPPAL A E, et al. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer′s disease-relevant murine model[J]. BMC Neurol, 2015, 15(19): 1-14. |
27 | PARK J H, LONG A, OWENS K, et al. Nicotinamide mononucleotide inhibits post-ischemic NAD+ degradation and dramatically ameliorates brain damage following global cerebral ischemia[J]. Neurobiol Dis, 2016, 95: 102-110. |
28 | WEI C C, KONG Y Y, LI G Q, et al. Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway[J]. Sci Rep, 2017, 7: 717. |
29 | KAWAMURA T, MALLAH G S, ARDALAN M, et al. Therapeutic effect of nicotinamide mononucleotide for hypoxic-ischemic brain injury in neonatal mice[J]. ASN Neuro, 2023, 15: 1-17. |
30 | WANG Z, ZHAO X, ZHOU Z, et al. Protective effects of nicotinamide mononucleotide on radiation-related cardiac injury[J]. Eur Heart J, 2023, 44(2): 1. |
31 | MARGIER M, KUEHNEMANN C, HULO N, et al. Nicotinamide mononucleotide administration prevents doxorubicin-induced cardiotoxicity and loss in physical activity in mice[J]. Cells, 2023, 12(1): 108. |
32 | WHITSON J A, BITTO A, ZHANG H, et al. SS-31 and NMN: two paths to improve metabolism and function in aged hearts[J]. Aging Cell, 2020, 19(10): 13213. |
33 | NADTOCHIY S M, WANG Y T, NEHRKE K, et al. Cardioprotection by nicotinamide mononucleotide (NMN): involvement of glycolysis and acidic pH[J]. Mol Cell Cardiol, 2018, 121: 155-162. |
34 | ZONG Z Y, LIU J, WANG N, et al. Nicotinamide mononucleotide inhibits hepatic stellate cell activation to prevent liver fibrosis via promoting PGE2 degradation[J]. Free Radic Biol Med, 2021, 162: 571-581. |
35 | GE J, YE L, CHENG M, et al. Preparation of microgels loaded with lycopene/NMN and their protective mechanism against acute liver injury[J]. Food Funct, 2024, 15(2): 809-822. |
36 | YOSHINO J, MILLS K F, YOON M J, et al. Nicotinamide mononucleotide, a key NAD+ intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice[J]. Cell Metab, 2011, 14(4): 528-536. |
37 | YASUDA I, HASEGAWA K, SAKAMAKI Y, et al. Pre-emptive short-term nicotinamide mononucleotide treatment in a mouse model of diabetic nephropathy[J]. J Am Soc Nephrol, 2021, 32(6): 1355-1370. |
38 | SUCHARD M S, SAVULESCU D M. Nicotinamide pathways as the root cause of sepsis-an evolutionary perspective on macrophage energetic shifts[J]. FEBS J, 2022, 289(4): 955-964. |
39 | CAO T, NI R, DING W, et al. Nicotinamide mononucleotide as a therapeutic agent to alleviate multi-organ failure in sepsis[J]. J Transl Med, 2023, 21(1): 883. |
40 | LIN J B, KUBOTA S, BAN N, et al. NAMPT-mediated NAD+ biosynthesis is essential for vision in mice[J]. Cell Rep, 2016, 17(1): 69-85. |
41 | YACH D, STUCKLER D, BROWNELL K D, et al. Epidemiologic and economic consequences of the global epidemics of obesity and diabetes[J]. Nat Med, 2006, 12(1): 62-66. |
42 | XIE X, YU C, ZHOU J, et al. Nicotinamide mononucleotide ameliorates the depression-like behaviors and is associated with attenuating the disruption of mitochondrial bioenergetics in depressed mice[J]. J Affect Disord, 2020, 263(15): 166-174. |
43 | UMMARINO S, MOZZON M, ZAMPORLINI F, et al. Simultaneous quantitation of nicotinamide riboside, nicotinamide mononucleotide and nicotinamide adenine dinucleotide in milk by a novel enzyme-coupled assay[J]. Food Chem, 2017, 221(15): 161-168. |
44 | BRAUN R D, SANTHANAM K S V, ELVING P J. Electrochemical oxidation in aqueous and nonaqueous media of dihydropyridine nucleotides NMNH, NADH, and NADPH[J]. J Am Chem Soc, 1975, 97(10): 2591-2598. |
45 | LIU Y, LUO C T, Li T, et al. Reduced nicotinamide mononucleotide (NMNH) potently enhances NAD+ and suppresses glycolysis, the TCA cycle, and cell growth[J]. J Proteome Res, 2021, 20(5): 2596-2606. |
46 | ZHANG L Y, KING E, BLACK W B, et al. Directed evolution of phosphite dehydrogenase to cycle noncanonical redox cofactors via universal growth selection platform[J]. Nat Commun, 2022, 13(1): 5021. |
47 | BLACK W B, ZHANG L Y, MAK W S, et al. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis[J]. Nat Chem Biol, 2020, 16(1): 87-94. |
48 | BANKS C E, COMPTON R G. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study[J]. Analyst, 2005, 130(9): 1232-1239. |
49 | LIN K C, CHEN S M. Reversible cyclic voltammetry of the NADH/NAD+ redox system on hybrid poly(luminol)/FAD film modified electrodes[J]. J Electroanal Chem, 2006, 589(1): 52-59. |
50 | CHEN S M, LIU M I. Electrocatalytic properties of NDGA and NDGA/FAD hybrid film modified electrodes for NADH/NAD+ redox reaction[J]. Electrochim Acta, 2006, 51(22): 4744-4753. |
51 | KUMAR S A, CHEN S M. Electrochemically polymerized composites of conducting poly(p-ABSA) and flavins (FAD, FMN, RF) films and their use as electrochemical sensors: a new potent electroanalysis of NADH and NAD+[J]. Sens Actuators B: Chem, 2007, 123(2): 964-977. |
52 | RADOI A, COMPAGNONE D, DEVIC E, et al. Low potential detection of NADH with Prussian Blue bulk modified screen-printed electrodes and recombinant NADH oxidase from thermus thermophilus[J]. Sens Actuators B: Chem, 2007, 121(2): 501-506. |
53 | LUZ R D C S, DAMOS F S, TANAKA A A, et al. Electrocatalytic activity of 2,3,5,6-tetrachloro-1,4-benzoquinone/ multi-walled carbon nanotubes immobilized on edge plane pyrolytic graphite electrode for NADH oxidation[J]. Electrochim Acta, 2008, 53(14): 4706-4714. |
54 | DAI H, XU H, LIN Y, et al. A highly performing electrochemical sensor for NADH based on graphite/poly(methylmethacrylate) composite electrode[J]. Electrochem Commun, 2009, 11(2): 343-346. |
55 | YANG D W, LIU H H. Poly(brilliant cresyl blue)-carbonnanotube modified electrodes for determination of NADH and fabrication of ethanol dehydrogenase-based biosensor[J]. Biosens Bioelectron, 2009, 25(4): 733-738. |
56 | TANG L, ZENG G, SHEN G, et al. Highly sensitive sensor for detection of NADH based on catalytic growth of Au nanoparticles on glassy carbon electrode[J]. Anal Bioanal Chem, 2009, 393(6/7): 1677-1684. |
57 | YOU J M, JEON S. Electrocatalytic oxidation of NADH on a glassy carbon electrode modified with MWCNT-Pd nanoparticles and poly 3,4-ethylenedioxypyrrole[J]. Electrochim Acta, 2011, 56(27): 10077-10082. |
58 | GAI P P, ZHAO C E, WANG Y, et al. NADH dehydrogenase-like behavior of nitrogen-doped graphene and its application in NAD+-dependent dehydrogenase biosensing[J]. Biosens Bioelectron, 2014, 62(15): 170-176. |
59 | KARIMI-MALEH H, SANATI A L, GUPTA V K, et al. A voltammetric biosensor based on ionic liquid/NiO nanoparticle modified carbon paste electrode for the determination of nicotinamide adenine dinucleotide (NADH)[J]. Sens Actuators B: Chem, 2014, 204: 647-654. |
60 | EGUÍLAZ M, GUTIERREZ F, GONZÁLEZ-DOMÍNGUEZ J M, et al. Single-walled carbon nanotubes covalently functionalized with polytyrosine: a new material for the development of NADH-based biosensors[J]. Biosens Bioelectron, 2016, 86: 308-314. |
61 | AKHTAR M H, MIR T A, GURUDATT N G, et al. Sensitive NADH detection in a tumorigenic cell line using a nanobiosensor based on the organic complex formation[J]. Biosens Bioelectron, 2016, 85: 488-495. |
62 | TIĞ G A. Highly sensitive amperometric biosensor for determination of NADH and ethanol based on Au-Ag nanoparticles/poly(L-cysteine)/reduced graphene oxide nanocomposite[J]. Talanta, 2017, 175: 382-389. |
63 | BILGI M, SAHIN E M, AYRANCI E. Sensor and biosensor application of a new redox mediator: rosmarinic acid modified screen-printed carbon electrode for electrochemical determination of NADH and ethanol[J]. J Electroanal Chem, 2018, 813: 67-74. |
64 | BLANDÓN-NARANJO L, PELLE F D, VÁZQUEZ M V, et al. Electrochemical behaviour of microwave-assisted oxidized MWCNTs based disposable electrodes: proposal of a NADH electrochemical sensor[J]. Electroanalysis, 2018, 30(3): 509-516. |
65 | MOHAMMAD-REZAEI R, GOLMOHAMMADPOUR M. Controlled electrodeposition of Au-copper oxide nanocomposite on a renewable carbon ceramic electrode for sensitive determination of NADH in serum samples[J]. Electroanalysis, 2020, 32(3): 606-612. |
66 | LIU F, DONG Z M, KAN X. Dual-signal from sandwich structural sensing interface for NADH electrochemical sensitive detection[J]. J Electroanal Chem, 2020, 873: 114387. |
67 | LEE J, SUH H N, AHN S, et al. Disposable electrocatalytic sensor for whole blood NADH monitoring[J]. Sci Rep, 2022, 12(1): 16716. |
68 | SOUZA O P L D, TIBA D Y, FERREIRA J H A, et al. Non-enzymatic biosensor based on F,S-doped carbon dots/copper nanoarchitecture applied in the simultaneous electrochemical determination of NADH, dopamine, and uric acid in plasma[J]. Analyst, 2024, 149(9): 2728-2737. |
69 | NEVES A R, VENTURA R, MANSOUR N, et al. Is the glycolytic flux in lactococcus lactis primarily controlled by the redox charge?: kinetics of NAD+ and NADH pools determined in vivo by 13C NMR[J]. J Biol Chem, 2002, 277(31): 28088-28098. |
70 | ANDERSON R M, LATORRE-ESTEVES M, NEVES A R, et al. Yeast life-span extension by calorie restriction is independent of NAD fluctuation[J]. Science, 2003, 302(5653): 2124-2126. |
71 | GUO B, GUREL P S, SHU R, et al. Monitoring ATP hydrolysis and ATPase inhibitor screening using 1H NMR[J]. Chem Commun, 2014, 50(81): 12037-12039. |
72 | GOWDA G A N, ABELL L, LEE C F, et al. Simultaneous analysis of major coenzymes of cellular redox reactions and energy using ex vivo 1H NMR spectroscopy[J]. Anal Chem, 2016, 88(9): 4817-4824. |
73 | SHABALIN K, NERINOVSKI K, YAKIMOV A, et al. NAD metabolome analysis in human cells using 1H NMR spectroscopy[J]. Int J Mol Sci, 2018, 19(12): 3906. |
74 | 孟辰笑凝, 郭中原, 李春, 等. 定量核磁共振法测定β-烟酰胺单核苷酸的含量[J]. 中国药学杂志, 2021, 56(2): 135-139. |
MENG C X N, GUO Z Y, LI C, et al. Determination of nicotinamide mononucleotide by quantitative nuclear magnetic resonance method[J]. Chin Pharm J, 2021, 56(2): 135-139. | |
75 | GANDHI S, CHINNADURAI V, BHADRA K, et al. Urinary metabolic modulation in human participants residing in Siachen: a 1H NMR metabolomics approach[J]. Sci Rep, 2022, 12(1): 9070. |
76 | LIU Y, YASAWONG M, YU B. Metabolic engineering of Escherichia coli for biosynthesis of β-nicotinamide mononucleotide from nicotinamide[J]. Microb Biotechnol, 2021, 14(6): 2581-2591. |
77 | 冯雪萍, 朱银宏, 程倩, 等. 高效液相色谱法测定保健食品中β-烟酰胺单核苷酸[J]. 中国食品添加剂, 2021, 32(11): 153-157. |
FENG X P, ZHU Y H, CHENG Q, et al. Determination of β-nicotinamide mononucleotide in dietary supplements by high performance liquid chromatography[J]. China Food Addit, 2021, 32(11): 153-157. | |
78 | FORMENTINI L, MORONI F, CHIARUGI A. Detection and pharmacological modulation of nicotinamide mononucleotide (NMN) in vitro and in vivo[J]. Biochem Pharmacol, 2009, 77(10): 1612-1620. |
79 | YAMADA K, HARA N, SHIBATA T, et al. The simultaneous measurement of nicotinamide adenine dinucleotide and related compounds by liquid chromatography/electrospray ionization tandem mass spectrometry[J]. Anal Biochem, 2006, 352(2): 282-285. |
80 | EVANS C, BOGAN K L, SONG P, et al. NAD+ metabolite levels as a function of vitamins and calorie restriction: evidence for different mechanisms of longevity[J]. BMC Chem Biol, 2010, 10(2): 1-10. |
81 | 李东芹. 液质联用法测定蔬菜和水果中的烟酰胺单核苷酸[J]. 实验技术与管理, 2019, 36(9): 57-59. |
LI D Q. Determination of nicotinamide mononucleotides in vegetables and fruits by liquid chromatography-mass spectrometry[J]. Exp Technol Manage, 2019, 36(9): 57-59. | |
82 | YAN J, SAKAMOTO T, ISLAM A, et al. Cinnamomum verum J. Presl bark contains high contents of nicotinamide mononucleotide[J]. Molecules, 2022, 27(20): 7054. |
83 | 刘晓谦, 杨红, 赵靖源, 等. UPLC-MS/MS测定铁皮石斛及其同属近源石斛品种中烟酰胺单核苷酸和烟酰胺腺嘌呤二核苷酸含量[J]. 中国中药杂志, 2021, 46(16): 4034-4039. |
LIU X Q, YANG H, ZHAO J Y, et al. Determination of β-nicotinamide mononucleotide and nicotinamide adenine dinucleotide in dendrobium officinale and congeneric species by UPLC-MS/MS[J]. China J Chin Mater Med, 2021, 46(16): 4034-4039. | |
84 | CARPI F M, CORTESE M, ORSOMANDO G, et al. Simultaneous quantification of nicotinamide mononucleotide and related pyridine compounds in mouse tissues by UHPLC-MS/MS[J]. Sep Sci Plus, 2018, 1(1): 22-30. |
85 | CUNY H, KRISTIANTO E, HODSON M P, et al. Simultaneous quantification of 26 NAD-related metabolites in plasma, blood, and liver tissue using UHPLC-MS/MS[J]. Anal Biochem, 2021, 633: 114409. |
86 | BIEGANOWSKI P, BRENNER C. Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD in fungi and humans[J]. Cell, 2004, 117(4): 459-502. |
87 | QIU Y, XU S, CHEN X, et al. NAD+ exhaustion by CD38 upregulation contributes to blood pressure elevation and vascular damage in hypertension[J]. Signal Transduct Targeted Ther, 2023, 8(1): 353. |
88 | 罗国安, 王义明. 毛细管电泳的原理及应用:第一讲毛细管电泳简介[J]. 色谱, 1995, 13(4): 254-256. |
LUO G A, WANG Y M. Principle and application of capillary electrophoresis: lecture 1 introduction of capillary electrophoresis[J]. Chin J Chromatogr, 1995, 13(4): 254-256. | |
89 | QURISHI R, KAULICH M, MÜLLER C E. Fast, efficient capillary electrophoresis method for measuring nucleotide degradation and metabolism[J]. J Chromatogr A, 2002, 952(1/2):275-281. |
90 | 马晓颖, 肖军, 陈珣, 等. 高效毛细管电泳法测定金针菇提取物中β-烟酰胺单核苷酸含量的初步研究[J]. 中国农业科技导报, 2023, 25(2): 220-226. |
MA X Y, XIAO J, CHEN X, et al. Preliminary study on determination of β-nicotinamide mononucleotide content from flammulina velutiper extract by high performance capillary electrophoresis[J]. J Agric Sci Technol, 2023, 25(2): 220-226. | |
91 | ZHOU W, ZHANG B, LIU Y, et al. Advances in capillary electrophoresis-mass spectrometry for cell analysis[J]. Trends Anal Chem, 2019, 117: 316-330. |
[1] | 蔡云帆, 许克惠, 赵耀, 李之婷, 夏凌云, 王晨语, 罗志晓, 牛丽娜. 表面增强拉曼光谱的基底设计及其血液检测研究进展[J]. 应用化学, 2025, 42(1): 1-13. |
[2] | 马春晓, 何爱珍, 姚光源, 潘杰, 陈建新. 马来酸酐聚合物的合成及其应用的研究进展[J]. 应用化学, 2025, 42(1): 14-28. |
[3] | 庞子君, 覃智, 陈啊聪, 关翔鸿, 韦庚锐, 李泽敏, 黄华, 韦朝海. 污废水中污染物去除的功能材料研究进展:元素物质-合成改性-工艺工程的尺度效应[J]. 应用化学, 2024, 41(2): 190-216. |
[4] | 张瑞起, 常宇, 刘作家, 李雪松, 潘利华. 稀土荧光探针用于快速检测乙肝表面抗原[J]. 应用化学, 2024, 41(12): 1760-1769. |
[5] | 杨赛男, 李平, 吕圆, 罗海勇, 张玲玲, 戴斌, 汪啸. 不同智能手机图像比色法的台间差异[J]. 应用化学, 2024, 41(10): 1481-1490. |
[6] | 刘明钰, 代婧伟. 水凝胶:探索医疗未来的创新材料[J]. 应用化学, 2024, 41(10): 1511-1518. |
[7] | 张越, 梁蕊, 赵灿男, 李春梅. 氧化石墨烯-DNA纳米探针用于三磷酸腺苷的检测与药物递送[J]. 应用化学, 2024, 41(1): 118-127. |
[8] | 刘凌波, 李双, 吴康兵. 激光雕刻石墨烯阵列电极测定曲美他嗪[J]. 应用化学, 2024, 41(1): 147-155. |
[9] | 姚春莹, 朱晓艳, 刘艳玲. 三维葡萄糖电化学传感器与胶原水凝胶集成实时监测细胞代谢[J]. 应用化学, 2024, 41(1): 156-163. |
[10] | 卢剑天, 邹金辉, 赵博霖, 张玉微. 无机纳米酶在分析传感领域的应用研究进展[J]. 应用化学, 2024, 41(1): 60-86. |
[11] | 刘明言, 石秀顶, 李天国, 王静. 电化学分析方法检测重金属离子研究进展[J]. 应用化学, 2023, 40(4): 463-475. |
[12] | 冷泽山, 郭洪梅, 蔡函青, 张剑. 高效液相色谱-电雾式检测器法同时检测食品中8种人工甜味剂的应用[J]. 应用化学, 2023, 40(3): 436-440. |
[13] | 姜士鹏, 周禹希, 孟沛然, 谢炎轩, 宋祉怡, 赵洹影, 孙越. 基于无金属可见光诱导原子转移自由基聚合方法制备人血清白蛋白超微印迹传感器及其性能[J]. 应用化学, 2023, 40(2): 299-308. |
[14] | 陈淑敏, 吕子全, 邹旋, 桂水清, 卢雪梅. 新冠常态下功能性口罩研究进展[J]. 应用化学, 2023, 40(11): 1504-1517. |
[15] | 周叶红, 张旭艺, 芦冬涛, 徐会文, 刘洋, 董川. 基于氮化碳量子点/罗丹明B系统检测汞离子的比率荧光探针[J]. 应用化学, 2023, 40(11): 1550-1557. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 49
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 87
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||