应用化学 ›› 2024, Vol. 41 ›› Issue (10): 1399-1408.DOI: 10.19894/j.issn.1000-0518.240140
• 综合评述 • 上一篇
收稿日期:
2024-04-27
接受日期:
2024-08-18
出版日期:
2024-10-01
发布日期:
2024-10-29
通讯作者:
付丽
Xiao-He WANG1, Lin XU2, Li FU1()
Received:
2024-04-27
Accepted:
2024-08-18
Published:
2024-10-01
Online:
2024-10-29
Contact:
Li FU
About author:
fuli1127@jlu.edu.cn摘要:
慢性难愈性伤口是影响全球数百万人健康的问题之一,及时地评估伤口状况并实施有效的治疗对于伤口愈合管理至关重要,然而这仍是一项临床难题。外科缝合线在伤口组织的闭合和愈合方面发挥着重要作用。近年来,通过物理及化学方法修饰缝合线,赋予其监测和促愈合功能已成为研究热点。目前,相关研究在缝合线的材料、结构设计和功能化以及智能化修饰方面均取得了可观的进展。文章阐述了缝合线的分类和功能,介绍了构建功能性诊疗缝合线的策略及研究进展,并探讨功能性缝合线面对的挑战和未来前景,旨在为智能诊疗缝合线的设计和研究方向提供思路和参考。
中图分类号:
王晓贺, 徐琳, 付丽. 整合诊疗功能的外科缝合线的研究进展[J]. 应用化学, 2024, 41(10): 1399-1408.
Xiao-He WANG, Lin XU, Li FU. Research Progress of Surgical Sutures with Integrated Diagnostic and Therapeutic Functions[J]. Chinese Journal of Applied Chemistry, 2024, 41(10): 1399-1408.
Material | Source | Absorbability | Configuration |
---|---|---|---|
Catgut Collagen Cotton Linen Nylon Silk | Natural Natural Natural Natural Natural Natural | Absorbable Absorbable Non-absorbable Non-absorbable Non-absorbable Non-absorbable | Monofilament Monofilament Multifilament Multifilament Monofilament Multifilament |
Polycaprolactone Poly(p-diaxanone) Poly(glycoloic acid) Poly(lactic acid) Poly(lactic-co-glycolic acid) Polyglyconate Polypropylene Polyamide Polybutester Polyester Polyurethane | Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic | Absorbable Absorbable Absorbable Absorbable Absorbable Absorbable Non-absorbable Non-absorbable Non-absorbable Non-absorbable Non-absorbable | Monofilament Monofilament Monofilament/Multifilament Monofilament/Multifilament Monofilament/Multifilament Monofilament Monofilament Monofilament/Multifilament Monofilament Multifilament Multifilament |
表1 外科缝合线的材料和种类
Table 1 Materials and types of surgical sutures
Material | Source | Absorbability | Configuration |
---|---|---|---|
Catgut Collagen Cotton Linen Nylon Silk | Natural Natural Natural Natural Natural Natural | Absorbable Absorbable Non-absorbable Non-absorbable Non-absorbable Non-absorbable | Monofilament Monofilament Multifilament Multifilament Monofilament Multifilament |
Polycaprolactone Poly(p-diaxanone) Poly(glycoloic acid) Poly(lactic acid) Poly(lactic-co-glycolic acid) Polyglyconate Polypropylene Polyamide Polybutester Polyester Polyurethane | Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic | Absorbable Absorbable Absorbable Absorbable Absorbable Absorbable Non-absorbable Non-absorbable Non-absorbable Non-absorbable Non-absorbable | Monofilament Monofilament Monofilament/Multifilament Monofilament/Multifilament Monofilament/Multifilament Monofilament Monofilament Monofilament/Multifilament Monofilament Multifilament Multifilament |
图2 (A) PU/RCD的自紧行为[22]; (B)倒刺的几何结构(a)和数字化图像(b)[28]
Fig.2 (A) Self tightening behavior of PU/RCD[22];(B) (a) Barb geometry and (b) barb digital image[28]
图3 (A) 琼脂平板上培养的细菌菌株: a. 蚕丝纤维组, b. 未涂敷药物的P.ricini 缝合线组, c. 涂敷药物的 P.ricini 缝合线组[35]; (B) 用原丝纤维和负载AgNPs的丝纤维处理的铜绿假单胞菌和金黄色葡萄球菌: a. 荧光显微照片, b. 扫描电子显微镜照片[39]
Fig.3 (A) Re-cultured colonies of tested bacterial strain on agar plates: a. bombyx mori silk fibroin, b. non-coated P.ricini waste suture, c. coated P.ricini waste suture[35]; (B) P.aeruginosa and S. aureus treated with unmodified and modified AgNPs of silk fibers: a. fluorescent micrographs, b. electron micrographs[39]
图4 (A)药物释放电子缝合系统示意图, 其核心是导电纤维应变传感器, 外壳是含有药物的热响应聚合物[56]; (B) BSS的分层示意图, 说明3层外壳之间的关系, 以实现其伤口监测、 促进细胞生长和杀菌的作用[57]
Fig. 4 (A)A schematic of the drug release electronic suture system with a conductive fiber strain sensor core and a thermos-responsive polymer shell containing drugs[56]?; (B) Schematic of the layered composition of BSS and illustration of the specific working relationships between the three layers of the shell to achieve its properties of wound sensing, cell growth promotion andbactericidal effects[57]
图5 (A)具有pH值响应释放行为和加速伤口愈合特性的Cur@ZIF-8外科缝合线(SZC)的示意图[59]; (B)负载药物的缝合线的药物释放示意图[62]
Fig.5 (A) Schematics of Cur@ZIF-8 decorated surgical sutures (SZC) with microenvironment pH-responsive release behavior and wound healing acceleration property[59]; (B) Schematic of drug release from drug-loaded sutures[62]
1 | ZHANG R, TIAN Y, PANG L, et al. Wound microenvironment-responsive protein hydrogel drug-loaded system with accelerating healing and antibacterial property[J]. ACS Appl Mater Interfaces, 2022, 14(8): 10187-10199. |
2 | ABBAS M, HUSSAIN T, ARSHAD M, et al. Wound healing potential of curcumin cross-linked chitosan/polyvinyl alcohol[J]. Int J Biologic Macromol, 2019, 140: 871-876. |
3 | VIVCHARENKO V, TRZASKOWSKA M, PRZEKORA A. Wound dressing modifications for accelerated healing of infected wounds[J]. Int J Mol Sci, 2023, 24(8): 7193. |
4 | CHEN X, TAN P, WEN Y, et al. Facile scalable one-step wet-spinning of surgical sutures with shape memory function and antibacterial activity for wound healing[J]. Chin Chem Lett, 2020, 31(6): 1499-1503. |
5 | ALSHOMER F, MADHAVAN A, PATHAN O, et al. Bioactive sutures: a review of advances in surgical suture functionalisation[J]. Current Med Chem, 2017, 24(2): 215-223. |
6 | TANIGUCHI H, MATSUMOTO-ODA A. Wound healing in wild male baboons: estimating healing time from wound size[J]. PLoS One, 2018, 13(10): 1-13. |
7 | MUYSOMS F E, ANTONIOU S A, BURY K, et al. European Hernia Society guidelines on the closure of abdominal wall incisions[J]. Hernia, 2015, 19(1): 1-24. |
8 | SETIAWATI A, JANG D, CHO D, et al. An accelerated wound-healing surgical suture engineered with an extracellular matrix[J]. Adv Healthc Mater, 2021, 10(6): 2192-2640. |
9 | PHAN P T, HOANG T T, THAI M T, et al. Smart surgical sutures using soft artificial muscles[J]. Sci Rep, 2021, 11(1): 22420. |
10 | YANG Y, YANG S B, WANG Y G, et al. Bacterial inhibition potential of quaternised chitosan-coated VICRYL absorbable suture: an in vitro and in vivo study[J]. J Orthop Translat, 2017, 8: 49-61. |
11 | PARELL G J, BECKER G D. Comparison of absorbable with nonabsorbable sutures in closure of facial skin wounds[J]. Arch Facial Plastic Surgery, 2003, 5(6): 488-490. |
12 | BYRNE M, ALY A. The surgical suture[J]. Aesthetic Surgery J, 2019, 39: S67-S72. |
13 | ABHARI R E, MARTINS J A, MORRIS H L, et al. Synthetic sutures: clinical evaluation and future developments[J]. J Biomater Appl, 2017, 32(3): 410-421. |
14 | CLAUDE O, GREGORY T, MONTEMAGNO S, et al. Vascular microanastomosis in rat femoral arteries: experimental study comparing non-absorbable and absorbable sutures[J]. J Reconstruct Microsurgery, 2007, 23(2): 87-91. |
15 | JOSEPH B, GEORGE A, GOPI S, et al. Polymer sutures for simultaneous wound healing and drug delivery-a review[J]. Int J Pharm, 2017, 524(1/2): 454-466. |
16 | KURAHASHI E, SUGIMOTO H, NAKANISHI E, et al. Shape memory properties of polyurethane/poly(oxyethylene) blends[J]. Soft Matter, 2012, 8(2): 496-503. |
17 | VAKIL A U, PETRYK N M, SHEPHERD E, et al. Biostable shape memory polymer foams for smart biomaterial applications[J]. Polymers, 2021, 13(23): 4084. |
18 | CHATTERJEE T, DEY P, NANVO G B, et al. Thermoresponsive shape memory polymer blends based on alpha olefin and ethylene propylene diene rubber[J]. Polymer, 2015, 78: 180-192. |
19 | ZHOU W C, TAN P F, CHEN X H, et al. Berberine-incorporated shape memory fiber applied as a novel surgical suture[J]. Front Pharmacol, 2020, 10: 1506. |
20 | JOO Y S, CHA J R, GONG M S. Biodegradable shape-memory polymers using polycaprolactone and isosorbide based polyurethane blends[J]. Mater Scie Eng C-Mater Biolog Appl, 2018, 91: 426-435. |
21 | DUARAH R, SINGH Y P, GUPTA P, et al. High performance bio-based hyperbranched polyurethane/carbon dot-silver nanocomposite: a rapid self-expandable stent[J]. Biofabrication, 2016, 8(4): 045013. |
22 | DUARAH R, SINGH Y P, GUPTA P, et al. Smart self-tightening surgical suture from a tough bio-based hyperbranched polyurethane/reduced carbon dot nanocomposite[J]. Biomed Mater, 2018, 13(4): 045004. |
23 | NESPOLI A, NINARELLO D, BASSANI E, et al. Proof of concept of a self-tightening needle-less suture using a NiTi shapememory alloy[J]. Bio-Design Manufact, 2023, 6(5): 536-549. |
24 | QI X, XU E, JIA M, et al. Bio-based, self-crosslinkable eucommia ulmoides gum/silica hybrids with body temperature triggering shape memory capability[J]. Macromol Mater Eng, 2021, 306(11):2100370. |
25 | INGLE N P, KING M W. Optimizing the tissue anchoring performance of barbed sutures in skin and tendon tissues[J]. J Biomechanics, 2010, 43(2): 302-309. |
26 | MCKENZIE A R. An experimental multiple barbed suture for the long flexor tendons of the palm and fingers. preliminary report[J]. J Bone Joint Surgery British Vol, 1967, 49(3): 440-447. |
27 | BARRIE K A, TOMAK S L, CHOLEWICKI J, et al. The role of multiple strands and locking sutures on gap formation of flexor tendon repairs during cyclical loading[J]. J Hand Surgery-Am Vol, 2000, 25(4): 714-720. |
28 | INGLE N P, KING M W, ZIKRY M A. Finite element analysis of barbed sutures in skin and tendon tissues[J]. J Biomech, 2010, 43(5): 879-886. |
29 | HUANG Y, CADET E R, KING M W, et al. Comparison of the mechanical properties and anchoring performance of polyvinylidene fluoride and polypropylene barbed sutures for tendon repair[J]. J Biomed Mater Res Part B-Appl Biomater, 2022, 110(10): 2258-2265. |
30 | LAROCHE G, MAROIS Y, SCHWARZ E, et al. Polyvinylidene fluoride monofilament sutures: can they be used safely for long-term anastomoses in the thoracic aorta?[J]. Artific Organs, 1995, 19(11): 1190-1199. |
31 | BARBOLT T A. Chemistry and safety of triclosan, and its use as an antimicrobial coating on coated VICRYL* plus antibacterial suture (coated polyglactin 910 suture with triclosan)[J]. Surg Infect, 2002, 3(Suppl 1): S45-53. |
32 | PAUL M D. Bidirectional barbed sutures for wound closure: evolution and applications[J]. J Am College Certified Wound Specialists, 2009, 1(2): 51-57. |
33 | DENNIS C, SETHU S, NAYAK S, et al. Suture materials-current and emerging trends[J]. J Biomed Mater Res Part A, 2016, 104(6): 1544-1559. |
34 | GALAL I, EL-HINDAWY K. Impact of using triclosan-antibacterial sutures on incidence of surgical site infection[J]. Am J Surgery, 2011, 202(2): 133-138. |
35 | KALITA H, HAZARIKA A, KALITA S, et al. Antimicrobials tethering on suture surface through a hydrogel: a novel strategy to combat postoperative wound infections[J]. RSC Adv, 2017, 7(52): 32637-32646. |
36 | CHEN X, ZHANG Q, HOU D, et al. Fabrication and characterization of novel antibacterial silk sutures with different braiding parameters[J]. J Nat Fibers, 2019, 16(6): 866-876. |
37 | CIRALDO F E, LIVERANI L, GRITSCH L, et al. Synthesis and characterization of silver-doped mesoporous bioactive glass and its applications in conjunction with electrospinning[J]. Materials, 2018, 11(5): 692. |
38 | CIRALDO F E, SCHNEPF K, GOLDMANN W H, et al. Development and characterization of bioactive glass containing composite coatings with ion releasing function for antibiotic-free antibacterial surgical sutures[J]. Materials, 2019, 12(3): 423. |
39 | DHAS S P, ANBARASAN S, MUKHERJEE A, et al. Biobased silver nanocolloid coating on silk fibers for prevention of post-surgical wound infections[J]. Int J Nanomed, 2015, 10(Suppl 1): 159-170. |
40 | ZHOU Y L, YANG Q Q, ZHANG L, et al. Nanoparticle-coated sutures providing sustained growth factor delivery to improve the healing strength of injured tendons[J]. Acta Biomater, 2021, 124: 301-314. |
41 | ALVAREZ-PAINO M, MUNOZ-BONILLA A, FERNANDEZ-GARCIA M. Antimicrobial polymers in the nano-world[J]. Nanomaterials, 2017, 7(2): 48. |
42 | SCHULTZ G S, SIBBALD R G, FALANGA V, et al. Wound bed preparation: a systematic approach to wound management[J]. Wound Repair Regen, 2003, 11 (Suppl 1): S1-S28. |
43 | JOHNSON P C, ROBERTS A D, HIRE J M, et al. The effect of instrumentation on suture tensile strength and knot pullout strength of common suture materials[J]. J Surgic Educ, 2016, 73(1): 162-165. |
44 | YU N, CAI T, SUN Y, et al. A novel antibacterial agent based on AgNPs and Fe3O4 loaded chitin microspheres with peroxidase-like activity for synergistic antibacterial activity and wound-healing[J]. Int J Pharma, 2018, 552(1/2): 277-287. |
45 | ZENG Q, HAN K, ZHENG C, et al. Degradable and self-luminescence porous silicon particles as tissue adhesive for wound closure, monitoring and accelerating wound healing[J]. J Colloid Interface Sci, 2022, 607: 1239-1252. |
46 | SRIDHAR R, LAKSHMINARAYANAN R, MADHAIYAN K, et al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals[J]. Chem Soc Rev, 2015, 44(3): 790-814. |
47 | YANG Y, XIA T, ZHI W, et al. Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor[J]. Biomater, 2011, 32(18): 4243-4254. |
48 | TOTTOLI E M, DORATI R, GENTA I, et al. Skin wound healing process and new emerging technologies for skin wound care and regeneration[J]. Pharmaceutics, 2020, 12(8): E735. |
49 | FIERHELLER M, SIBBALD R G. A clinical investigation into the relationship between increased periwound skin temperature and local wound infection in patients with chronic leg ulcers[J]. Adv Skin Wound Care, 2010, 23(8): 369-379. |
50 | NAKAGAMI G, SANADA H, IIZAKA S, et al. Predicting delayed pressure ulcer healing using thermography: a prospective cohort study[J]. J Wound Care, 2010, 19(11): 465-472. |
51 | KIM D H, WANG S, KEUM H, et al. Thin, flexible sensors and actuators as 'instrumented' surgical sutures for targeted wound monitoring and therapy [J]. Small, 2012, 8(21): 3263-3268. |
52 | WIJLENS A M, HOLLOWAY S, BUS S A, et al. An explorative study on the validity of various definitions of a 2.2 ℃ temperature threshold as warning signal for impending diabetic foot ulceration[J]. Int Wound J, 2017, 14(6): 1346-1351. |
53 | HOUSHYAR S, BHATTACHARYYA A, KHALID A, et al. Multifunctional sutures with temperature sensing and infection contro[J]. Macromol Biosci, 2021, 21(3): e2000364. |
54 | GAO B, GUO M, LYU K, et al. Intelligent silk fibroin based microneedle dressing (i-SMD)[J]. Adv Funct Mater, 2021, 31(3): 1-9. |
55 | GUO M, WANG Y, GAO B, et al. Shark tooth-inspired microneedle dressing for intelligent wound management[J]. ACS Nano, 2021, 15(9): 15316-15327. |
56 | LEE Y, KIM H, KIM Y, et al. A multifunctional electronic suture for continuous strain monitoring and on-demand drug release[J]. Nanoscale, 2021, 13(43): 18112-18124. |
57 | LIU M, ZHANG Y, LIU K, et al. Biomimicking antibacterial opto-electro sensing sutures made of regenerated silk proteins[J]. Adv Mater, 2021, 33(1): e2004733. |
58 | PERCIVAL S L, FINNEGAN S, DONELLI G, et al. Antiseptics for treating infected wounds: efficacy on biofilms and effect of pH[J]. Critical Rev Microbiol, 2016, 42(2): 293-309. |
59 | ZHANG Q, ZOU Y, TANG L, et al. Stage-controlled antibacterial surgical sutures based on curcumin@ZIF-8 functional coating for improved wound healing[J]. Prog Org Coat, 2023, 184: 107829. |
60 | MORELLI F, ANDERSON A, MCLISTER A, et al. Electrochemically driven reagent release from an electronic suture[J]. Electrochem Commun, 2017, 81: 70-73. |
61 | HANAFI A, NOGRALES N, ABDULLAH S, et al. Cellulose acetate phthalate microencapsulation and delivery of plasmid DNA to the intestines[J]. J Pharma Sci, 2013, 102(2): 617-626. |
62 | CABOT J M, DAIKUARA L Y, YUE Z, et al. Electrofluidic control of bioactive molecule delivery into soft tissue models based on gelatin methacryloyl hydrogels using threads and surgical sutures[J]. Sci Rep, 2020, 10(1): 1-10. |
[1] | 洪宗昊, 吴世龙, 陈全. 非缠结苯乙烯-对叔丁基苯乙烯共聚物的非线性拉伸流变行为[J]. 应用化学, 2024, 41(8): 1098-1106. |
[2] | 李鸿, 孙德文. 嵌段共聚物Single plumber′s nightmare网络结构的动力学构筑方案[J]. 应用化学, 2024, 41(8): 1107-1115. |
[3] | 孙浩峻, 衣小虎, 程建华, 苏朝晖. 对位芳纶中间位结构单元含量的定量分析[J]. 应用化学, 2024, 41(8): 1126-1130. |
[4] | 朱连超, 史文仓. 应变速率对炭黑填充丁苯硫化胶应力-应变行为的影响[J]. 应用化学, 2024, 41(7): 959-965. |
[5] | 王超, 彭永军, 朱波, 韩毅. 碳化硼/铅/聚乙烯复合材料的热稳定性及屏蔽性能[J]. 应用化学, 2024, 41(6): 890-898. |
[6] | 刘博睿, 牟倡骏, 班雨, 王磊, 闫秋艳, 石恒冲, 殷敬华, 栾世方. 聚苯乙烯磺酸钠与季鏻盐表面活性剂复合物的结构调控及其抗菌性能[J]. 应用化学, 2024, 41(4): 521-528. |
[7] | 周正, 夏艺玮, 金杰, 郑松祺, 周思宇, 赵桂艳. 超韧聚乳酸/乙烯丙烯酸丁酯甲基丙烯酸缩水甘油酯共混物的制备与性能[J]. 应用化学, 2024, 41(4): 529-537. |
[8] | 师海岗, 郭艳妮. 甲基三氯硅烷改性三聚氰胺阻燃疏水泡沫的制备及其性能[J]. 应用化学, 2024, 41(4): 538-546. |
[9] | 李倩玉, 刘杰, 唐涛. 聚碳酸酯/短切碳纤维/二苯砜磺酸钾复合材料的阻燃性能[J]. 应用化学, 2023, 40(12): 1662-1671. |
[10] | 张梦飞, 张久洋. 高分子基金属复合材料的前沿应用[J]. 应用化学, 2023, 40(11): 1581-1586. |
[11] | 刘三荣, 刘超, 赵卿波, 赵洪福, 毕吉福. 运动鞋用橡塑材料的研究进展[J]. 应用化学, 2023, 40(10): 1376-1395. |
[12] | 王琳枫, 田慧, 龚光碧, 吴春姬, 王保力, 崔冬梅. 稀土配合物催化的乙烯、环烯烃和1-辛烯三元共聚[J]. 应用化学, 2023, 40(10): 1396-1404. |
[13] | 刘凡, 黄绍永, 陈全. 聚左旋乳酸遥爪离聚物的静态结晶及剪切诱导结晶行为[J]. 应用化学, 2023, 40(10): 1412-1419. |
[14] | 田满, 游江岸, 姜治伟, 唐涛. 碳纳米管改性苯乙烯-丙烯腈共聚物/聚脲纳米复合泡沫[J]. 应用化学, 2023, 40(9): 1267-1276. |
[15] | 李钰炫, 赵昱昊, 代雨泽, 姜敏, 张瑛, 周光远. 聚2,5-呋喃二甲酸乙二醇酯/纳米二氧化钛/硅藻土复合材料的制备和表征[J]. 应用化学, 2023, 40(9): 1277-1287. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||