应用化学 ›› 2024, Vol. 41 ›› Issue (10): 1381-1398.DOI: 10.19894/j.issn.1000-0518.240125
• 综合评述 •
收稿日期:
2024-04-15
接受日期:
2024-08-20
出版日期:
2024-10-01
发布日期:
2024-10-29
通讯作者:
张玉微
基金资助:
Xiao-Ying YANG1, Bao-Hua ZHANG1, Ye-Ying LAN1, Yu-Wei ZHANG1,2()
Received:
2024-04-15
Accepted:
2024-08-20
Published:
2024-10-01
Online:
2024-10-29
Contact:
Yu-Wei ZHANG
About author:
ywzhang@scnu.edu.cnSupported by:
摘要:
随着可再生能源的迅速发展,氧化还原液流电池作为一种容量高、灵活性好、扩展性强和循环使用寿命长的可再生能源储存系统,备受行业关注。其中,双极板作为氧化还原液流电池电堆的重要组成部分,发挥着支撑电极、传导电流、连接电池、支持电堆和分离正负极电解液等作用。由于所处的工作环境苛刻,双极板应同时具备导电性高、机械性能好、耐腐蚀性好、渗透性低和化学稳定等特点。因此,开发低成本的高性能双极板,已经成为液流电池发展的关键要素之一。本文将重点介绍氧化还原液流电池中碳基复合双极板近年来的发展现状,涵盖了不同流场设计、不同碳基材料和聚合物材料的选择等对双极板导电性能、机械性能、抗渗透性能、抗腐蚀性能和单电池性能的影响情况。最后,基于碳基复合双极板目前发展的需求及关键技术瓶颈做了简要分析和展望。
中图分类号:
杨晓莹, 张保华, 蓝叶滢, 张玉微. 氧化还原液流电池碳基复合双极板材料研究进展[J]. 应用化学, 2024, 41(10): 1381-1398.
Xiao-Ying YANG, Bao-Hua ZHANG, Ye-Ying LAN, Yu-Wei ZHANG. Research Progress of Carbon Based Composite Bipolar Plate Materials for Redox Flow Batteries[J]. Chinese Journal of Applied Chemistry, 2024, 41(10): 1381-1398.
图4 (A)分级交错流场设计和(B)常规交错流场设计的示意图[27]
Fig.4 Schematic of (A) hierarchical interdigitated flow field design and (B) conventional interdigitated flow field design[27]
图6 复合材料电导率。(A) 主要填充类型与总填充质量分数对复合材料电导率的影响(其中次要填充填料质量分数固定在6%), 以及在(B)次要填充类型与总填充质量分数对复合材料电导率的影响(KB:ketjenblack carbon)[36]
Fig.6 Electrical conductivity of the composites. Effect on (A) major filler types versus total filler contents, in which minor filler contents were fixed to 6%, and (B) minor filler types versus total filler contents (KB: ketjenblack carbon)[36]
图9 碳/聚乙烯复合材料CFE集成BP与传统石墨双极板的充放电效率[61]
Fig.9 Charge/discharge efficiencies of the carbon/PE composite BP with CFE integration and the conventional graphite bipolar plate[61]
图10 (A) PP-弹性体/PP/炭黑/碳纤维复合材料集流体的VRFB单电池在电流密度为70 mA/cm2时的循环性能; (B) 含有PP-弹性体/PP/炭黑/碳纤维复合材料集流体的VRFB电池堆栈在电流密度为50 mA/cm2时的循环性能[63]
Fig.10 (A) Cycling performance of a VRFB single cell equipped with current collectors of the PP-elastomer/PP/carbon black/carbon fiber composite at a current density of 70 mA/cm2; (B) Cycling performance of a VRFB cell stack equipped with current collectors of the PP-elastomer/PP/carbon black/carbon fiber composite at a current density of 50 mA/cm2[63]
图11 含有石墨集流器的VRFB电池堆栈在电流密度为50 mA/cm2时的循环性能[63]
Fig.11 Cycling performance of a VRFB cell stack equipped with graphite current collectors at a current density of 50 mA/cm2[63]
图12 展丝,UD和商用石墨双极板的单电池测试结果。(A)对应的充/放电图; (B)能量效率,库伦效率和电压效率[66]
Fig.12 Single cell test results of spread-tow, UD, and commercial graphite bipolar plates. (A) Representative charge/discharge graphs; (B) Energy efficiencies, coulombic efficiencies and voltage efficiencies[66]
1 | LIAO W, JIANG F, ZHANG Y, et al. Highly-conductive composite bipolar plate based on ternary carbon materials and its performance in redox flow batteries[J]. Renewable Energy, 2020, 152: 1310-1316. |
2 | GUPTA G, SATOLA B, KOMSIYSKA L, et al. Electrochemical aging and characterization of graphite-polymer based composite bipolar plates for vanadium redox flow batteries[J]. J Electrochem Soc, 2022, 169(8): 080503. |
3 | PAN J, WEN Y, CHENG J, et al. Evaluation of substrates for zinc negative electrode in acid PbO2-Zn single flow batteries[J]. Chin J Chem Eng, 2016, 24(4): 529-534. |
4 | LEE N J, LEE S, KIM K J, et al. Development of carbon composite bipolar plates for vanadium redox flow batteries[J]. Bull Korean Chem Soc, 2012, 33(11): 3589-3592. |
5 | 王文嫔, 王金海, 王树博, 等. 全钒氧化还原液流电池复合双极板制备与性能[J]. 化工学报, 2011, 62(S1): 203-207. |
WANG W P, WANG J H, WANG S B, et al. Properties of conductive bipolar plate for all-vanadium flow battery[J]. CIESC J, 2011, 62(S1): 203-207. | |
6 | PARK M, JUNG Y, RYU J, et al. Material selection and optimization for highly stable composite bipolar plates in vanadium redox flow batteries[J]. J Mater Chem A, 2014, 2: 15808-15815. |
7 | KIM K H, KIM B G, LEE D G. Development of carbon composite bipolar plate (BP) for vanadium redox flow battery (VRFB)[J]. Compos Struct, 2014, 109: 253-259. |
8 | PUKHA V E, GLUKHOV A A, BELMESOV A A, et al. Corrosion-resistant nanostructured carbon-based coatings for applications in fuel cells based on bipolar plates[J]. Vacuum, 2023, 218: 112643. |
9 | MINKE C, KUNZ U, TUREK T. Techno-economic assessment of novel vanadium redox flow batteries with large-area cells[J]. J Power Sources, 2017, 361: 105-114. |
10 | MINKE C, TUREK T. Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries-a review[J]. J Power Sources, 2018, 376: 66-81. |
11 | ZHENG M, SUN J, MEINRENKEN C J, et al. Pathways toward enhanced techno-economic performance of flow battery systems in energy system applications[J]. J Electrochem Energy Convers Storage, 2019, 16(2): 021001. |
12 | LOKTIONOV P, KARTASHOVA N, KONEV D, et al. Fluoropolymer impregnated graphite foil as a bipolar plates of vanadium flow battery[J]. Int J Energy Res, 2021, 46(8): 10123-10132. |
13 | FRANK R, WITTMANN L, KLEFFEL T, et al. Investigating the integration of nonwoven carbon fibers for mechanical enhancement in compression molded fiber-reinforced polymer bipolar plates[J]. Polymers, 2023, 15(19): 3891. |
14 | 杨虹, 刘庆华, 缪平, 等. 液流电池双极板材料研究进展[J]. 现代化工, 2020, 40(12): 77-86. |
YANG H, LIU Q H, MIU P, et al. Advances in bipolar plate materials for redox flow battery[J]. Mod Chem Ind, 2020, 40(12): 77-86. | |
15 | MINKE C, HICKMANN T, SANTOS A R D, et al. Cost and performance prospects for composite bipolar plates in fuel cells and redox flow batteries[J]. J Power Sources, 2016, 305: 182-190. |
16 | TIUSANEN J, VLASVELD D, VUORINEN J. Review on the effects of injection moulding parameters on the electrical resistivity of carbon nanotube filled polymer parts[J]. Compos Sci Technol, 2012, 72(14): 1741-1752. |
17 | CAGLAR B, FISCHER P, KAURANEN P, et al. Development of carbon nanotube and graphite filled polyphenylene sulfide based bipolar plates for all-vanadium redox flow batteries[J]. J Power Sources, 2014, 256: 88-95. |
18 | MA P, SIDDIQUI N A, MAROM G, et al. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review[J]. Composites Part A, 2010, 41(10): 1345-1367. |
19 | JEONG K I, OH J, SONG S A, et al. A review of composite bipolar plates in proton exchange membrane fuel cells: electrical properties and gas permeability[J]. Compos Struct, 2021, 262: 113617. |
20 | LEE D, LIM J W, NAM S, et al. Method for exposing carbon fibers on composite bipolar plates[J]. Compos Struct, 2015, 134: 1-9. |
21 | CHOI N H, OLMO D D, FISCHER P, et al. Development of flow fields for zinc slurry air flow batteries[J]. Batteries, 2020, 6(1): 15. |
22 | DUAN Z N, QU Z G, WANG Q, et al. Structural modification of vanadium redox flow battery with high electrochemical corrosion resistance[J]. Appl Energy, 2019, 250: 1632-1640. |
23 | DARLING R M, PERRY M L. The influence of electrode and channel configurations on flow battery performance[J]. J Electrochem Soc, 2014, 161: A1381. |
24 | LOURENSSEN K, WILLIAMS J, AHMADPOUR F, et al. Vanadium redox flow batteries: a comprehensive review[J]. J Energy Storage, 2019, 25: 100844. |
25 | GERHARDT M R, WONG A A, AZIZ M J. The effect of interdigitated channel and land dimensions on flow cell performance[J]. J Electrochem Soc, 2018, 165: A2625. |
26 | SATOLA B. Review-bipolar plates for the vanadium redox flow battery[J]. J Electrochem Soc, 2021, 168: 060503. |
27 | ZENG Y, LI F, LU X, et al. A hierarchical interdigitated flow field design for scale-up of high-performance redox flow batteries[J]. Appl Energy, 2019, 238: 435-441. |
28 | LEE J, KIM J, PARK H. Numerical simulation of the power-based efficiency in vanadium redox flow battery with different serpentine channel size[J]. Int J Hydrogen Energy, 2019, 44(56): 29483-29492. |
29 | AL-YASIRI M, PARK J. Study on channel geometry of all-vanadium redox flow batteries[J]. J Electrochem Soc, 2017, 164: A1970. |
30 | HOUSER J, CLEMENT J, PEZESHKI A, et al. Influence of architecture and material properties on vanadium redox flow battery performance[J]. J Power Sources, 2016, 302: 369-377. |
31 | MAURYA S, NGUYEN P T, KIM Y S, et al. Effect of flow field geometry on operating current density, capacity and performance of vanadium redox flow battery[J]. J Power Sources, 2018, 404: 20-27. |
32 | YEETSORN R, OUAJAI W P, ONYU K. Studies on surface modification of polypropylene composite bipolar plates using an electroless deposition technique[J]. RSC Adv, 2020,10: 24330-24342. |
33 | LIU Z, WANG B, YU L. Preparation and surface modification of PVDF-carbon felt composite bipolar plates for vanadium flow battery[J]. J Energy Chem, 2018, 27(5): 1369-1375. |
34 | CAGLAR B, FISCHER P, KAURANEN P, et al. Development of carbon nanotube and graphite filled polyphenylene sulfide based bipolar plates for all-vanadium redox flow batteries[J]. J Power Sources, 2014, 256: 88-95. |
35 | LIAO W, ZHANG Y, ZHOU X, et al. Low-carbon-content composite bipolar plates: a novel design and its performance in vanadium redox flow batteries[J]. ChemistrySelect, 2019, 4(8): 2421-2427. |
36 | PARK M, JUNG Y, RYU J, et al. Material selection and optimization for highly stable composite bipolar plates in vanadium redox flow batteries[J]. J Mater Chem A, 2014, 2: 15808-15815. |
37 | CHOE J, LIM J W. Carbon-composite bipolar plate-integrated current collector for vanadium redox flow battery[J]. J Power Sources, 2024, 589: 233751. |
38 | KRISHNAN N N, GUPTA G, SATOLA B, et al. Connection of bipolar plate with graphite felt electrode for vanadium flow battery using a powder thermal unification method[J]. J Electrochem Soc, 2022, 169: 100517. |
39 | DARICIK F, TOPCU A, AYDIN K, et al. Carbon nanotube (CNT) modified carbon fiber/epoxy composite plates for the PEM fuel cell bipolar plate application[J]. Int J Hydrogen Energy, 2023, 48(3): 1090-1106. |
40 | NAM S, LEE D, LEE D G, et al. Nano carbon/fluoroelastomer composite bipolar plate for a vanadium redox flow battery (VRFB)[J]. Compos Struct, 2017, 159: 220-227. |
41 | BHOSLE A C, RENGASWAMY R. Interfacial contact resistance in polymer electrolyte membrane fuel cells: recent developments and challenges[J]. Renewable Sustainable Energy Rev, 2019, 115: 109351. |
42 | WULFSBERG J, HERRMANN A, ZIEGMANN G, et al. Combination of carbon fibre sheet moulding compound and prepreg compression moulding in aerospace industry[J]. Procedia Eng, 2014, 81: 1601-1607. |
43 | YANG L, ZHOU Y, WANG S, et al. A novel bipolar plate design for vanadium redox flow battery application[J]. Int J Electrochem Sci, 2017, 12(8): 7031-7038. |
44 | LI W, JING S, WANG S, et al. Experimental investigation of expanded graphite/phenolic resin composite bipolar plate[J]. Int J Hydrogen Energy, 2016, 41(36): 16240-16246. |
45 | GAUTAM R K, KUMAR A. A review of bipolar plate materials and flow field designs in the all-vanadium redox flow battery[J]. J Energy Storage, 2022, 48: 104003. |
46 | DUAN Z, QU Z, REN Q, et al. Review of bipolar plate in redox flow batteries: materials, structures, and manufacturing[J]. Electrochem Energy Rev, 2021, 4: 718-756. |
47 | CHOE J, LIM J W. Conductive nanoparticle-embedded carbon composite bipolar plates for vanadium redox flow batteries[J]. Compos Struct, 2024, 329: 117770. |
48 | LEE D, CHOE J, NAM S, et al. Development of non-woven carbon felt composite bipolar plates using the soft layer method[J]. Compos Struct, 2017, 160: 976-982. |
49 | LEE D, LEE D G, LIM J W. Development of multifunctional carbon composite bipolar plate for vanadium redox flow batteries[J]. J Intell Mater Syst Struct, 2018, 29(17): 3386-3395. |
50 | KIM S, YOON Y, NAREJO G M, et al. Flexible graphite bipolar plates for vanadium redox flow batteries[J]. Int J Energy Res, 2021, 45(7): 11098-11108. |
51 | RUBAN E, STEPASHKIN A, GVOZDIK N, et al. Carbonized elastomer composite filled with hybrid carbon fillers for vanadium redox flow battery bipolar plates[J]. Mater Today Commun, 2021, 26: 101967. |
52 | RAMIREZ-HERRERA C A, TELLEZ-CRUZ M M, PEREZ-GONZALEZ J, et al. Enhanced mechanical properties and corrosion behavior of polypropylene/multi-walled carbon nanotubes/carbon nanofibers nanocomposites for application in bipolar plates of proton exchange membrane fuel cells[J]. Int J Hydrogen Energy, 2021, 46(51): 26110-26125. |
53 | LI W, JING S, WANG S, et al. Experimental investigation of expanded graphite/phenolic resin composite bipolar plate[J]. Int J Hydrogen Energy, 2016, 41(36): 16240-16246. |
54 | MENG Q, YU L, SHANG L, et al. Corrosive behavior and interfacial conductivity of stampable a-C film on titanium bipolar plate in proton exchange membrane fuel cells[J]. Diamond Relat Mater, 2023, 135: 109796. |
55 | CHOE J, LIM J W, KIM M, et al. Durability of graphite coated carbon composite bipolar plates for vanadium redox flow batteries[J]. Compos Struct, 2015, 134: 106-113. |
56 | HU B, CHEN L, GUO C, et al. Constructing three-dimensional conductive network in composite bipolar plates by sacrificial materials for improvement of proton exchange membrane fuel cell performance[J]. J Power Sources, 2022, 552: 232261. |
57 | LIU H, YANG L, XU Q, et al. Corrosion behavior of a bipolar plate of carbon-polythene composite in a vanadium redox flow battery[J]. RSC Adv, 2015, 5: 5928-5932. |
58 | STAOLA B, KOMSIYSKA L, WITTSTOCK G. Corrosion of graphite-polypropylene current collectors during overcharging in negative and positive vanadium redox flow battery half-cell electrolytes[J]. J Electrochem Soc, 2018, 165: A963. |
59 | SHARMA P, BILICAN A, SCHMIDT W, et al. Navigating harsh ageing: unraveling galvanostatic corrosion effects on different constituents of carbon-polymer composite bipolar plates for vanadium redox flow batteries[J]. Carbon, 2024, 221: 118907. |
60 | JIANG F, LIAO W, AYUKAWA T, et al. Enhanced performance and durability of composite bipolar plate with surface modification of cactus-like carbon nanofibers[J]. J Power Sources, 2021, 482: 228903. |
61 | LIM J W, LEE D G. Carbon fiber/polyethylene bipolar plate-carbon felt electrode assembly for vanadium redox flow batteries (VRFB)[J]. Compos Struct, 2015, 134: 483-492. |
62 | LV B, SHAO Z, HE L, et al. A novel graphite/phenolic resin bipolar plate modified by doping carbon fibers for the application of proton exchange membrane fuel cells[J]. Prog Nat Sci: Mater Int, 2020, 30(6): 876-881. |
63 | ZHANG J, ZHOU T, XIA L, et al. Polypropylene elastomer composite for the all-vanadium redox flow battery: current collector materials[J]. J Mater Chem A, 2015, 3: 2387-2398. |
64 | ARTEIRO A, CATALANOTTI G, XAVIER J, et al. Effect of tow thickness on the structural response of aerospace-grade spread-tow fabrics[J]. Compos Struct, 2017, 179: 208-223. |
65 | SASIKUMAR A, TRIAS D, COSTA J, et al. Impact and compression after impact response in thin laminates of spread-tow woven and non-crimp fabrics[J]. Compos Struct, 2019, 215: 432-445. |
66 | CHOE J, LEE D, ON S Y, et al. Development of a spread-tow fabric composite bipolar plate with fiber-spreading effect for vanadium redox flow battery[J]. Composites Part A, 2024, 176: 107878. |
[1] | 米常焕, 夏熙, 张校刚. 酸性介质中Mn(Ⅲ)/Mn(Ⅱ)在铂电极上的氧化还原特性[J]. 应用化学, 2003, 20(2): 183-185. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||