应用化学 ›› 2023, Vol. 40 ›› Issue (1): 40-51.DOI: 10.19894/j.issn.1000-0518.220156
收稿日期:
2022-04-27
接受日期:
2022-08-31
出版日期:
2023-01-01
发布日期:
2023-01-28
通讯作者:
毕洪梅
基金资助:
Received:
2022-04-27
Accepted:
2022-08-31
Published:
2023-01-01
Online:
2023-01-28
Contact:
Hong-Mei BI
About author:
hongmei_bi@126.comSupported by:
摘要:
由磷脂组成的微管结构在有机体组织及器官中均有存在,在细胞间的物质传递及信息交流等方面起着重要作用。实现磷脂管在体外的简单快速组装是解析生命信息系统的良好途径。由于良好的生物相容性及支架结构特性,对磷脂管进行材料或结构修饰,是扩大其潜在应用的极佳手段。以磷脂管本身为载体以及以磷脂管为模板修饰构建的微纳米材料,在生物、材料及化学等方面的应用也取得了一系列成果。对磷脂管的体外组装及其在多个领域的应用研究进行了梳理归纳,重点对磷脂管的体外组装方式以及磷脂管在生物及化学等领域的应用等做了分类阐述与总结,并提出磷脂管在多功能纳米复合材料方面的未来发展及应用方向。
中图分类号:
毕洪梅. 磷脂管的体外组装及其在生物与化学领域的研究进展[J]. 应用化学, 2023, 40(1): 40-51.
Hong-Mei BI. Research Progress of Assembly of Phospholipid Tube in Vitro and Its Potential Application in the Field of Biology and Chemistry[J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 40-51.
图1 磷脂管的体外组装: (a)磷脂分子自组装[11]; (b)外力拉伸[17]; (c)电场诱导[23]
Fig.1 Assembly of phospholipids tube in vitro: (a) Self-assemble of lipid molecules[11]; (b) External force stretching[17]; (c) Actuation of electric field[23]
图2 Dex (a)和DSP (b)的累计释放曲线; (c) PLA2对磷脂管的消解过程[46]
Fig.2 Accumulated release profile of Dex (a) and DSP (b); (c) Images of LTs with and without PLA2 over time[46]
图5 纳米线的形成. (a)纳米线形成示意图; (b)原位合成金纳米粒子[76]; (c)填充金纳米粒子[74]; (d) CdS纳米粒子[76]
Fig.5 Formation of nanowire. (a) Schematic of nanowire formation; (b) Au nanoparticles synthesized in situ[76]; (c) Filled with Au nanoparticles[74]; (d) CdS nanopartices[76]
1 | RUSTOM A, SAFFRICH R, MARKOVIC I, et al. Nanotubular highways for intercellular organelle transport[J]. Science, 2004, 303(5660): 1007-1010. |
2 | HURTLEY S M. Tunneling nanotubes under the microscope[J]. Science, 2019, 363(6428): 704. |
3 | DUBEY G P, BEN Y S. Intercellular nanotubes mediate bacterial communication[J]. Cell, 2011, 144(4): 590-600. |
4 | REGEV R N, WILSON D W, CARVALHO T G, et al. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles[J]. Cell, 2013, 153(5): 1120-1133. |
5 | ROSTAMI J, HOLMQVIST S, LINDSTRÖM V, et al. Human astrocytes transfer aggregated alpha-synuclein via tunneling nanotubes[J]. J Neurosci, 2017, 37(49): 11835-11853. |
6 | SHIMIZU T, DING W, KAMETA N. Soft-Matter nanotubes: a platform for diverse functions and applications[J]. Chem Rev, 2020, 120(4): 2347-2407. |
7 | YAGER P, SCHOEN P E. Formation of tubules by a polymerizable surfactant[J]. Mol Cryst Liq Cryst, 1984, 106: 371-381. |
8 | HAN W B, KWAK R, KANG J Y, et al. Generation of solvent-free 3D lipid structure arrays on high aspect ratio Si microwell substrate[J]. Adv Mater Interfaces, 2019, 6(5): 1801554. |
9 | ZHOU Y. Lipid nanotubes as scaffold toward construction of one-dimensional nanostructures[J]. Sci Adv Mater, 2010, 2(3): 359-364. |
10 | BURKE T G, RUDOLPH A S, PRICE R R, et al. Differential scanning calorimetric study of the thermotropic phase-behavior of a polymerizable, tubule-forming lipid[J]. Chem Phys Lipids, 1988, 48(3/4): 215-230. |
11 | GEORGER J H, SINGH A, PRICE R R, et al. Helical and tubular microstructures formed by polymerizable phosphatidylcholines[J]. J Am Chem Soc, 1987, 109(20): 6169-6175. |
12 | CHAPPELL J S, YAGER P. Formation of mineral microstructures with a high aspect ratio from phospholipid-bilayer tubules[J]. J Mater Sci Lett, 1992, 11(10): 633-636. |
13 | BRAZHNIK K P, VREELAND W N, HUTCHISON J B, et al. Directed growth of pure phosphatidylcholine nanotubes in microfluidic channels[J]. Langmuir, 2005, 21(23): 10814-10817. |
14 | DITTRICH P S, HEULE M, RENAUD P, et al. On-chip extrusion of lipid vesicles and tubes through microsized apertures[J]. Lab Chip, 2006, 6(4): 488-493. |
15 | WEST J, MANZ A, DITTRICH P S. Lipid nanotubule fabrication by microfluidic tweezing[J]. Langmuir, 2008, 24(13): 6754-6758. |
16 | LIN Y C, HUANG K S, CHIANG J T, et al. Manipulating self-assembled phospholipid microtubes using microfluidic technology[J]. Sens Actuators B: Chem, 2006, 117(2): 464-471. |
17 | SUGIHARA K, CHAMI M, DERENYI I, et al. Directed self-assembly of lipid nanotubes from inverted hexagonal structures[J]. ACS Nano, 2012, 6(8): 6626-6632. |
18 | TAN Y C, SHEN A Q, LI Y, et al. Engineering lipid tubules using nano-sized building blocks: the combinatorial self-assembly of vesicles[J]. Lab Chip, 2008, 8(2): 339-345. |
19 | SEKINE Y, ABE K, SHIMIZU A, et al. Shear flow-induced nanotubulation of surface-immobilized liposomes[J]. RSC Adv, 2012, 2: 2682-2684. |
20 | ANTONOVA K, VITKOVA V, MEYER C. Membrane tubulation from giant lipid vesicles in alternating electric fields[J]. Phys Rev E, 2016, 93(1): 012413. |
21 | PRATHYUSHA K R, PAGONABARRAGA I, KUMAR P B S. Modification of lipid membrane compressibility induced by an electric field[J]. Phys Rev E, 2020, 102(6): 062413. |
22 | HAYES M A, PYSHER M D, CHEN K. Liposomes form nanotubules and long range networks in the presence of electric field[J]. J Nanosci Nanotechnol, 2007, 7(7): 2283-2286. |
23 | BI H M, FU D G, WANG L, et al. Lipid nanotube formation using space-regulated electric field above interdigitated electrodes[J]. ACS Nano, 2014, 8(4): 3961-3969. |
24 | ZHU C, ZHANG Y, WANG Y, et al. Point-to-Plane nonhomogeneous electric-field-induced simultaneous formation of giant unilamellar vesicles (GUVs) and lipid tubes[J]. Chem Eur J, 2016, 22(9): 2906-2909. |
25 | GHELLAB S E, HAN X J. Lipid tubes formation induced by electroosmotic flow[J]. Chem Phys Lett, 2018, 706:515-519. |
26 | CASTILLO J A, NARCISO D M, HAYES M A. Bionanotubule formation from surface-attached liposomes using electric fields[J]. Langmuir, 2009, 25(1): 391-396. |
27 | WANG Z, MAO X, WANG H, et al. Fabrication of lipid nanotubules by ultrasonic drag force[J]. Langmuir, 2021, 37(30): 8945-8952. |
28 | BAXTER A M, JORDAN L R, KULLAPPAN M, et al. Tubulation of supported lipid bilayer membranes induced by photosensitized lipid oxidation[J]. Langmuir, 2021, 37(19): 5753-5762. |
29 | JONES S, HUYNH A, GAO Y, et al. Calcium ion-assisted lipid tubule formation[J]. Mater Chem Front, 2018, 2(3): 603-608. |
30 | GHOSH M, NANDI S, LAYEK S, et al. Formation of lipid tubules induced by a sugar-like molecule myo-inositol[J]. Chem Commun, 2022, 58(3): 459-462. |
31 | WANG Q, QIN X, FANG J, et al. Nanomedicines for the treatment of rheumatoid arthritis: state of art and potential therapeutic strategies[J]. Acta Pharm Sin B, 2021, 11(5): 1158-1174. |
32 | CAO D Y, WANG Y Q. Wave dispersion in viscoelastic lipid nanotubes conveying viscous protein solution[J]. Eur Phys J Plus, 2020, 135(1): 24. |
33 | DAVOODI P, LEE L Y, XU Q, et al. Drug delivery systems for programmed and on-demand release[J]. Adv Drug Delivery Rev, 2018, 132:104-138. |
34 | QIN X, HE L, FAN D, et al. Targeting the resolution pathway of inflammation using Ac2-26 peptide-loaded PEGylated lipid nanoparticles for the remission of rheumatoid arthritis[J]. Asia J Pharma Sci, 2021, 16(4): 483-493. |
35 | KILIAN H I, PRADHAN A J, JAHAGIRDAR D, et al. Light-Triggered release of large biomacromolecules from porphyrin-phospholipid liposomes[J]. Langmuir, 2021, 37(36): 10859-10865. |
36 | BI H M, CHEN Z Q, QIU J Q, et al. Magnetic-field-triggered remote drug release and analysis of mechanism[J]. Sensor Mater, 2021, 33(9): 3221-3231. |
37 | BI H M, MA S H, LI Q C, et al. Magnetically triggered drug release from biocompatible microcapsules for potential cancer therapeutics[J]. J Mater Chem B, 2016, 4(19): 3269-3277. |
38 | LOMBARDO D, KISELEV M A. Methods of liposomes preparation: formation and control factors of versatile nanocarriers for biomedical and nanomedicine application[J]. Pharmaceutics, 2022, 14(3): 543. |
39 | SAGAR R, LOU J, WATSON A J, et al. Zinc triggered release of encapsulated cargo from liposomes via a synthetic lipid switch[J]. Bioconjugate Chem, 2021, 32(12): 2485-2496. |
40 | ODETTE W L, HENNECKER C D, MITTERMAIER A K, et al. EDTA-Gradient loading of doxorubicin into ferrocene-containing liposomes: effect of lipid composition and visualization of triggered release by Cryo-TEM[J]. Langmuir, 2021, 37(38): 11222-11232. |
41 | BI H M, CHEN Z Q, QIU J Q. Drug release and magneto-calorific analysis of magnetic lipid microcapsules for potential cancer therapeutics[J]. Des Monomers Polym, 2021, 24(1): 156-161. |
42 | BI H M, HAN X J. Magnetic field triggered drug release from lipid microcapsule containing lipid-coated magnetic nanoparticles[J]. Chem Phys Lett, 2018, 706:455-460. |
43 | JACOB S, NAIR A B, SHAH J, et al. Lipid nanoparticles as a promising drug delivery carrier for topical ocular therapy; an overview on recent advances[J]. Pharmaceutics, 2022, 14(3): 533. |
44 | RATHEL T, MANNELL H, PIRCHER J, et al. Magnetic stents retain nanoparticle-bound antirestenotic drugs transported by lipid microbubbles[J]. Pharm Res, 2012, 29(5): 1295-1307. |
45 | LEE K L, HUBBARD L C, HERN S, et al. Shape matters: the diffusion rates of TMV rods and CPMV icosahedrons in a spheroid model of extracellular matrix are distinct[J]. Biomater Sci, 2013, 1(6): 581. |
46 | WANG Q, HE L, FAN D, et al. PLA2-triggered release of drugs from self-assembled lipid tubules for arthritis treatments[J]. ACS Appl Bio Mater, 2020, 3(9): 6488-6496. |
47 | DING W, WADA M, MINAMIKAWA H, et al. Cisplatin-encapsulated organic nanotubes by endo-complexation in the hollow cylinder[J]. Chem Commun, 2012, 48(69): 8625-8627. |
48 | DING W, KAMETA N, MINAMIKAWA H, et al. Hybrid organic nanotubes with dual functionalities localized on cylindrical nanochannels control the release of doxorubicin[J]. Adv Healthc Mater, 2012, 1(6): 699-706. |
49 | GOLDSTEIN A S, GELB M H, YAGER P. Continuous and highly variable rate controlled release of model drugs from sphingolipid-based complex high axial ratio microstructures[J]. J Control Release, 2001, 70(1): 125-138. |
50 | SONG S, CHEN Y, YAN Z, et al. Self-assembled rosette nanotubes for incorporating hydrophobic drugs in physiological environments[J]. Int J Nanomed, 2011, 6: 101-107. |
51 | WAKASUGI A, ASAKAWA M, KOGISO M, et al. Organic nanotubes for drug loading and cellular delivery[J]. Int J Nanomed, 2011, 413(1): 271-278. |
52 | DING W X, CHECHETKA S A, MASUDA M, et al. Lipid nanotube tailored fabrication of uniquely shaped polydopamine nanofibers as photothermal converters[J]. Chem Eur J, 2016, 22(13): 4345-4350. |
53 | KAMETA N, MASUDA M, MINAMIKAWA H, et al. Functionalizable organic nanochannels based on lipid nanotubes: encapsulation and nanofluidic behavior of biomacromolecules[J]. Chem Mater, 2007, 19(14): 3553-3560. |
54 | KAMETA N, MINAMIKAWA H, SOMEYA Y, et al. Confinement effect of organic nanotubes toward green fluorescent protein (GFP) depending on the inner diameter size[J]. Chem Eur J, 2010, 16(14): 4217-4223. |
55 | KAMETA N, MASUDA M, MIZUNO G, et al. Supramolecular nanotube endo sensing for a guest protein[J]. Small, 2008, 4(5): 561-565. |
56 | KAMETA N, MINAMIKAWA H, MASUDA M, et al. Controllable biomolecule release from self-assembled organic nanotubes with asymmetric surfaces: pH and temperature dependence[J]. Soft Matter, 2008, 4(8): 1681-1687. |
57 | KAMETA N, MATSUZAWA T, YAOI K, et al. Glycolipid-based nanostructures with thermal-phase transition behavior functioning as solubilizers and refolding accelerators for protein aggregates[J]. Soft Matter, 2017, 13(17): 3084-3090. |
58 | MEILANDER N J, YU X, ZIATS N P, et al. Lipid-based microtubular drug delivery vehicles[J]. J Control Release, 2001, 71(1): 141-152. |
59 | MEILANDER N J, PASUMARTHY M K, KOWALCZYK T H, et al. Sustained release of plasmid DNA using lipid microtubules and agarose hydrogel[J]. J Control Release, 2003, 88(2): 321-331. |
60 | DING W, WADA M, KAMETA N, et al. Functionalized organic nanotubes as tubular nonviral gene transfer vector[J]. J Control Release, 2011, 156(1): 70-75. |
61 | HENRICUS M M, JOHNSON K T, BANERJEE I A. Investigation of insulin loaded self-assembled microtubules for drug release[J]. Bioconjugate Chem, 2008, 19(12): 2394-2400. |
62 | SCHNUR J M, PRICE R, SCHOEN P, et al. Lipid-based tubule microstructures[J]. Thin Solid Films, 1987, 152: 181-206. |
63 | SCHNUR J M. Lipid tubules-a paradigm for molecularly engineered structures[J]. Science, 1993, 262(5140): 1669-1676. |
64 | MARKOWITZ M, SINGH A. Self-assembling properties of 1,2-diacyl-sn-glycero-3-phosphohydroxyethanol: a headgroup-modified diacetylenic phospholipid[J]. Langmuir, 1991, 7(1): 16-18. |
65 | PRICE R, PATCHAN M. Controlled release from cylindrical microstructures[J]. J Microencapsulation, 1991, 8(3): 301-306. |
66 | MARKOWITZ M, BARAL S, BRANDOW S, et al. Palladium ion assisted formation and metallization of lipid tubules[J]. Thin Solid Films, 1993, 224(2): 242-247. |
67 | WANG Y, MA S, LI Q, et al. Hollow platinum nanospheres and nanotubes templated by shear flow-induced lipid vesicles and tubules and their applications on hydrogen evolution[J]. ACS Sustain Chem Eng, 2016, 4(7): 3773-3779. |
68 | WANG Y, LI Q, ZHANG P, et al. One-pot green synthesis of bimetallic hollow palladium-platinum nanotubes for enhanced catalytic reduction of p-nitrophenol[J]. J Colloid Int Sci, 2019, 539: 161-167. |
69 | CHATTOPADHYAY T, KOGISO M, AOYAGI M, et al. Single bilayered organic nanotubes: anchors for production of a reusable catalyst with nickel ions[J]. Green Chem, 2011, 13(5): 1138-1140. |
70 | CHATTOPADHYAY T, KOGISO M, ASAKAWA M, et al. Copper (II)-coordinated organic nanotube: a novel heterogeneous catalyst for various oxidation reactions[J]. Catal Commun, 2010, 12(1): 9-13. |
71 | BARAL S, SCHOEN P. Silica-deposited phospholipid tubules as a precursor to hollow submicron-diameter silica cylinders[J]. Chem Mater, 1993, 5(2): 145-147. |
72 | JI Q M, KAMIYA S, JUNG J H, et al. Self-assembly of glycolipids on silica nanotube templates yielding hybrid nanotubes with concentric organic and inorganic layers[J]. J Mater Chem, 2005, 15(7): 743-748. |
73 | JI Q M, IWAURA R, SHIMIZU T. Regulation of silica nanotube diameters: sol-gel transcription using solvent-sensitive morphological change of peptidic lipid nanotubes as templates[J]. Chem Mater, 2007, 19(6): 1329-1334. |
74 | YANG B, KAMIYA S, SHIMIZU Y, et al. Glycolipid nanotube hollow cylinders as substrates: fabrication of one-dimensional metallic-organic nanocomposites and metal nanowires[J]. Chem Mater, 2004, 16(14): 2826-2831. |
75 | SHIMIZU T. Self-assembled lipid nanotube hosts: the dimension control for encapsulation of nanometer-scale guest substances[J]. J Polym Sci Polym Chem, 2006, 44(17): 5137-5152. |
76 | ZHOU Y, SHIMIZU T. Lipid nanotubes: a unique template to create diverse one-dimensional nanostructures[J]. Chem Mater, 2008, 20(3): 625-633. |
77 | YANG B, KAMIYA S, YOSHIDA K, et al. Confined organization of Au nanocrystals in glycolipid nanotube hollow cylinders[J]. Chem Commun, 2004, (5): 500-501. |
78 | ZHOU Y, KOGISO M, ASAKAWA M, et al. Antimicrobial nanotubes consisting of Ag-embedded peptidic lipid-bilayer membranes as delivery vehicles[J]. Adv Mater, 2009, 21(17): 1742-1745. |
79 | ECKHARDT S, BRUNETTO P S, GAGNON J, et al. Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine[J]. Chem Rev, 2013, 113(7): 4708-4754. |
80 | ZHOU Y, KOGISO M, HE C, et al. Fluorescent nanotubes consisting of CdS-embedded bilayer membranes of a peptide lipid[J]. Adv Mater, 2007, 19(8): 1055-1058. |
81 | ZHOU Y, JI Q, SHIMIZU Y, et al. One-dimensional confinement of CdS nanodots and subsequent formation of CdS nanowires by using a glycolipid nanotube as a ship-in-bottle scaffold[J]. J Phys Chem C, 2008, 112(47): 18412-18416. |
82 | KAMETA N, ISHIKAWA K, MASUDA M, et al. Soft nanotubes acting as a light-harvesting antenna system[J]. Chem Mater, 2012, 24(1): 209-214. |
83 | KAMETA N, AOYAGI M, ASAKAWA M. Enhancement of the photocatalytic activity of rhenium(I) complexes by encapsulation in light-harvesting soft nanotubes[J]. Chem Commun, 2017, 53(73): 10116-10119. |
84 | KAMETA N, MASUDA M, SHIMIZU T. Soft nanotubes acting as confinement effecters and chirality inducers for achiral polythiophenes[J]. Chem Commun, 2016, 52(7): 1346-1349. |
85 | 杨佳臻, 邹昊洋, 丁建勋, 等. 胱氨酸基聚氨基酸纳米材料的可控合成及其生物医学应用[J]. 高分子学报, 2021, 52(8): 960-977. |
YANG J Z, ZOU H Y, DING J X, et al. Controlled synthesis and biomedical applications of cystine-based polypeptide nanomaterials[J]. Acta Polym Sin, 2021, 52(8): 960-977. |
[1] | 张毅城, 查飞, 唐小华, 常玥, 田海锋, 郭效军. 非均相催化制备有机过氧化物的研究进展[J]. 应用化学, 2023, 40(6): 769-788. |
[2] | 于宜辰, 张雨宸, 张耀远, 吴芹, 史大昕, 陈康成, 黎汉生. 本体金属氧化物在丙烷无氧脱氢中的研究进展[J]. 应用化学, 2023, 40(6): 789-805. |
[3] | 熊兴泉, 张辉, 高利柱. 木质素的功能化与应用研究进展[J]. 应用化学, 2023, 40(6): 806-819. |
[4] | 谢信涛, 江桑铌, 于喜飞. 苯硼酸选择性结合的pH响应脂质体用于药物递送[J]. 应用化学, 2023, 40(6): 860-870. |
[5] | 杨玉雯, 齐婧瑶, 李林, 楚国宁, 王赛, 张钰, 张爽. 磁性NiFe2O4负载Ru催化5-羟甲基糠醛选择性氧化合成2,5-呋喃二甲酸[J]. 应用化学, 2023, 40(6): 879-887. |
[6] | 雷学博, 刘慧景, 丁赫宇, 申国栋, 孙润军. 用于降解印染废水中有机污染物的光催化剂的研究进展[J]. 应用化学, 2023, 40(5): 681-696. |
[7] | 伍凡, 田贺元, 刘鹏, 孙立伟, 张一波, 杨向光. 高氧空位尖晶石型锰基催化剂用于低温NH3-SCR反应[J]. 应用化学, 2023, 40(5): 697-707. |
[8] | 李冰, 刘军辉, 宋亚坤, 李想, 郭旭明, 熊健. 金属-有机骨架材料在催化氨硼烷水解释氢中的研究进展[J]. 应用化学, 2023, 40(3): 329-340. |
[9] | 刘振邦, 张硕, 包宇, 马英明, 梁蔚淇, 王伟, 何颖, 牛利. 深度学习在化学信息学中的应用研究进展[J]. 应用化学, 2023, 40(3): 360-373. |
[10] | 王路飞, 甄蒙蒙, 沈伯雄. 贫电解液下电催化剂对调控锂硫电池性能的研究进展[J]. 应用化学, 2023, 40(2): 188-209. |
[11] | 陈玉竹, 刘思思, 张蒙蒙, 林祥德, 曾冬冬. 基于抗菌性壳聚糖/羧甲基纤维素复合药物涂层的聚氨酯敷料[J]. 应用化学, 2023, 40(2): 252-260. |
[12] | 成燕琴, 黎卓熹, 王有娣, 徐娟娟, 卞证. 结构简单的4-羟基脯氨酰胺高效催化醛和硝基烯不对称迈克尔加成反应[J]. 应用化学, 2023, 40(1): 146-154. |
[13] | 曹蓉, 夏杰桢, 廖漫华, 赵路超, 赵晨, 吴琪. 单原子催化剂在电化学合成氨中的理论研究进展[J]. 应用化学, 2023, 40(1): 9-23. |
[14] | 张丹, 尚润梅, 赵振涛, 李君华, 邢锦娟. V/Ce-Al2O3催化甲醇选择性氧化制备二甲氧基甲烷[J]. 应用化学, 2022, 39(9): 1429-1436. |
[15] | 王凯, 杨海宽, 刘慧兰, 路嘉敏, 张晨. 基于豆甾醇衍生物的超分子凝胶的合成与性能[J]. 应用化学, 2022, 39(9): 1453-1463. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||