应用化学 ›› 2022, Vol. 39 ›› Issue (7): 1119-1128.DOI: 10.19894/j.issn.1000-0518.210334
收稿日期:
2021-07-09
接受日期:
2021-10-22
出版日期:
2022-07-01
发布日期:
2022-07-11
通讯作者:
盛兰
作者简介:
第一联系人:共同第一作者
基金资助:
Xiao-Yan WEI, Jin-Yan ZHANG, Lan SHENG(), Sean Xiao-An ZHANG
Received:
2021-07-09
Accepted:
2021-10-22
Published:
2022-07-01
Online:
2022-07-11
Contact:
Lan SHENG
About author:
shenglan17@jlu.edu.cnSupported by:
摘要:
基于罗丹明衍生物(4-N-丙烯酰胺-(3',6'-双(二乙氨基)-螺[异苯并呋喃-1,9'-氧杂蒽]-3-酮)(AM-RhB)在适度酸性条件下(4.4<pH<6)会发生内酯环开环而显示颜色或发射荧光,而在强酸环境下(pH<1)会发生过度质子化而使颜色和荧光均“消失”的现象,提出了一种新的双模式水致变色材料制备方法。AM-RhB与固体酸混合作为显色层,通过水的引入与去除来调节固体酸的酸性(减弱或增强),从而改变分子处于开环或过度质子化状态,从而调控材料的颜色与荧光有与无(on/off)之间的可逆变化。通过分别选用不同的固体酸(苯磺酸和氨基磺酸),实现了“关闭-开启”(off-on)和“开启-关闭”(on-off)两种不同显色模式切换的双模式水致变色材料,并展现了其在喷水无墨打印可重复书写纸方面的应用。所制备的打印纸水写前后颜色反射率变化>25%,荧光强度变化>700,且可以循环使用5次以上。该工作为新型水致变色材料的开发提供了一种新的思路。
中图分类号:
卫小燕, 张金艳, 盛兰, 张晓安. Off-on/On-off双模式水致变色材料:水诱导微环境酸度改变调控罗丹明衍生物颜色切换[J]. 应用化学, 2022, 39(7): 1119-1128.
Xiao-Yan WEI, Jin-Yan ZHANG, Lan SHENG, Sean Xiao-An ZHANG. Off‑on/On‑off Dual‑Mode Hydrochromic Materials: Water‑Induced Acidity Changes in the Microenvironment Regulate the Color Switching of Rhodamine Derivatives[J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1119-1128.
图1 (A) AM-RhB在不同摩尔盐酸的THF中的UV-Vis光谱和(B)荧光发射光谱(n(AM-RhB)=0.3 mmoL,V(AM-RhB)=3 mL, λex = 530 nm,狭缝宽度:3 nm,3 nm); (C) 不同微环境中分子的结构变化
Fig.1 (A) UV-Vis absorption spectra and (B) fluorescent emission spectra of AM-RhB in THF with different molar of hydrochloric acid (n(AM-RhB)=0.3 mmoL,V(AM-RhB)=3 mL, λex = 530 nm, slit width: 3 nm, 3 nm); (C) Structural changes of molecules in solution
图3 (A) 材料的结构示意图; (B)“关-开”模式材料加水前后的紫外-可见反射光谱和(C)荧光发射光谱(λex = 560 nm,狭缝宽度: 5 nm, 3 nm); (D) 基于不同酸(λex = 560 nm,狭缝宽度:5 nm,3 nm)的水致变色荧光材料在λmax处的可见反射(左)和荧光发射强度(右)图; (E) 不同状态下的材料图片
Fig.3 (A) Schematic diagram of the material structure; (B) The UV-Vis reflective spectra and (C) fluorescence emission spectra of the “off-on” mode material before and after adding water (λex=560 nm, slit width: 5 nm, 3 nm); (D) Plot of visible reflection(left) and fluorescent emission intensity(right) at λmax of hydrochromic fluorescent materials based on different acid (λex = 560 nm, slit width: 5 nm,3 nm);(E) Picture of materials in different condition
图4 (A)“开-关”模式材料加水前后的紫外-可见反射光谱和(B)荧光发射光谱(λex = 550 nm,狭缝宽度:5 nm,3 nm);加水前后SFA、MO和混合物(C)颜色的变化和(D,E)可见反射的变化
Fig.4 (A) The UV-Vis reflective spectra and (B) fluorescence emission spectra of the “on-off” mode material before and after adding water (λex = 550 nm, slit width: 5 nm, 3 nm); The change of (C) color and (D,E) visible reflection of SFA, MO and mixture before and after adding water
图5 (A) 基于AM-RhB&BSA的WJRP在0~500 s内加入1滴水后,在568 nm处的反射率随时间变化。蓝色箭头表示加水时刻; (B) 色密度仪测得的L*、 a*、b*和“关-开”模式纸在加水前(上)和加水后(下)的照片; (C)加水前后“关-开”模式纸张的显微镜图像(上)和荧光图像(下)
Fig.5 (A) Time-dependent reflectivity variations at 568 nm for AM-RhB based WJRP upon adding a droplet of water during 0~500 s, respectively. Blue arrows indicate the moment of adding water. (B) L*, a*, b* measured by spectrodensitometer and photographs of the “off-on” mode paper before (up) and after (down) adding water, respectively. (C) Microscopic images (up) and fluorescence images (down) of the “off-on” mode paper before and after addition of water
图6 (A) 基于AM-RhB&BSA的双模式水致变色纸张连续打印擦除5次期间的照片 (B) WJRP通过水喷涂(书写)和60 ℃加热(擦除)循环中在568 nm处的反射率和(C)在592 nm处的荧光强度(λex = 560 nm,狭缝宽度: 5 nm,3 nm)变化与循环次数的关系图
Fig.6 (A) Photographs during 5 consecutive print-erase rounds on the dual-mode hydrochromic paper. (B) A plot of the reflectivity at 568 nm and (C) fluorescent intensity at 592 nm versus the number of cycles as the WJRP is cycled through water spraying (Write) and water removal (Erase) by means of wetting/heating at 60 ℃ (λex = 560 nm, slit width: 5 nm, 3 nm)
1 | TIAN E, WANG J, ZHENG Y, et al. Colorful humidity sensitive photonic crystal hydrogel[J]. J Mater Chem, 2008, 18(10): 1116-1122. |
2 | KIM E, KIM S Y, JO G, et al. Colorimetric and resistive polymer electrolyte thin films for real-time humidity sensors[J]. ACS Appl Mater Interfaces, 2012, 4(10): 5179-5187. |
3 | WANG Z, ZHANG J, XIE J, et al. Bioinspired water-vapor-responsive organic/inorganic hybrid one-dimensional photonic crystals with tunable full-color stop band[J]. Adv Funct Mater, 2010, 20(21): 3784-3790. |
4 | GEORGAKI M I, BOTSIALAS A, ARGITIS P, et al. 1-D polymeric photonic crystals as spectroscopic zero-power humidity sensors[J]. Microelectron Eng, 2014, 115: 55-60. |
5 | HAWKEYE M M, BRETT M J. Optimized colorimetric photonic-crystal humidity sensor fabricated using glancing angle deposition[J]. Adv Funct Mater, 2011, 21(19): 3652-3658. |
6 | XUAN R, WU Q, YIN Y, et al. Magnetically assembled photonic crystal film for humidity sensing[J]. J Mater Chem, 2011, 21(11): 3672-3676. |
7 | SHENG L, LI M, ZHU S, et al. Hydrochromic molecular switches for water-jet rewritable paper[J]. Nat Commun, 2014, 5: 3044. |
8 | XI G, SHENG L, ZHANG I, et al. Endowing hydrochromism to fluorans via bioinspired alteration of molecular structures and microenvironments and expanding their potential for rewritable paper[J]. ACS Appl Mater Interfaces, 2017, 9(43): 38032-38041. |
9 | XI G, SHENG L, DU J, et al. Water assisted biomimetic synergistic process and its application in water-jet rewritable paper[J]. Nat Commun, 2018, 9: 4819. |
10 | GAO W, QIN T, XI G, et al. Microenvironments induced ring-closing of halide salts of oxazolidines: a rare inverse proton gradient process and its application in water-jet rewritable paper[J]. J Mater Chem C, 2018, 6(40): 10775-10781. |
11 | QIN T, HAN J Q, GENG Y, et al. A multiaddressable dyad with switchable cyan/magenta/yellow colors for full-color rewritable paper[J]. Chem Eur J, 2018, 24(48): 12539-12545. |
12 | QIN T, SHENG L, ZHANG X A. Highly tunable multicolor water-jet rewritable paper based on simple new-type dual-addressable oxazolidines[J]. ACS Appl Mater Interfaces, 2018, 10(47): 40838-40843. |
13 | SAMANTA D, GALAKTIONOVA D, GEMEN J, et al. Reversible chromism of spiropyran in the cavity of a flexible coordination cage[J]. Nat Commun, 2018, 9: 641. |
14 | LIU Y, FAN M, ZHANG C, et al. Waterchromism of protonated photomerocyanine dye[J]. Dyes Pigm, 2008, 76(1): 264-269. |
15 | LEE J, PYO M, LEE S H, et al. Hydrochromic conjugated polymers for human sweat pore mapping[J]. Nat Commun, 2014, 5: 3736. |
16 | PARK D H, JEONG W, SEO M, et al. Inkjet-printable amphiphilic polydiacetylene precursor for hydrochromic imaging on paper[J]. Adv Funct Mater, 2016, 26(4): 498-506. |
17 | SEO M, PARK D H, PARK B J, et al. Flexible patch-type hydrochromic polydiacetylene sensor for human sweat pore mapping[J]. J Appl Polym Sci, 2017, 134(6): 44419-44426. |
18 | 鞠乐, 张婷, 秦天游, 等. 通过开关单元调节赋予荧烷水致变色性质及喷水打印应用[J]. 应用化学, 2019, 36(2): 137-145. |
JU L, ZHANG T, QIN T Y, et al. Endowing hydrochromism to fluoranes by modifying their switch sites and their applications in water-jet printing[J]. Chinese J Appl Chem, 2019, 36(2): 137-145. | |
19 | OOYAMA Y, SUMOMOGI M, NAGANO T, et al. Detection of water in organic solvents by photo-induced electron transfer method[J]. Org Biomol Chem, 2011, 9(5): 1314-1316. |
20 | OOYAMA Y, MASTUGASAKO A, OKA K, et al. Fluorescence PET (photo-induced electron transfer) sensors for water based on anthracene-boronic acid ester[J]. Chem Commun, 2011, 47(15): 4448-4450. |
21 | OOYAMA Y, MATSUGASAKO A, NAGANO T, et al. Fluorescence PET (photo-induced electron transfer) sensor for water based on anthracene-amino acid[J]. J Photochem Photobiol A, 2011, 222(1): 52-53. |
22 | OOYAMA Y, MATSUGASAKO A, Hagiwara Y, et al. Highly sensitive fluorescence PET (photo-induced electron transfer) sensor for water based on anthracene-bisboronic acid ester[J]. RSC Adv, 2012, 2(20): 7666-7668. |
23 | OOYAMA Y, AOYAMA S, FURUE K, et al. Fluorescence sensor for water based on PET (photo-induced electron transfer): anthracene-bis(aminomethyl)phenylboronic acid ester[J]. Dyes Pigm, 2015, 123: 248-253. |
24 | OOYAMA Y, UENAKA K, MATSUGASAKO A, et al. Molecular design and synthesis of fluorescence PET (photo-induced electron transfer) sensors for detection of water in organic solvents[J]. RSC Adv, 2013, 3(45): 23255-23263. |
25 | KIM K H, LEE W J, KIM J N, et al. An off-on fluorescent sensor for detecting a wide range of water content in organic solvents[J]. Korean Chem Soc, 2013, 34(8): 2261-2266. |
26 | THIRUMALAI R, MUKHOPADHYAY R D, PRAVEEN V K, et al. A slippery molecular assembly allows water as a self-erasable security marker[J]. Sci Rep, 2015, 5: 9842. |
27 | DENG Q, LI Y, WU J, et al. Highly sensitive fluorescent sensing for water based on poly(m-aminobenzoic acid)[J]. Chem Commun, 2012, 48(24): 3009-3011. |
28 | DING L, ZHANG Z, LI X, et al. Highly sensitive determination of low-level water content in organic solvents using novel solvatochromic dyes based on thioxanthone[J]. Chem Commun, 2013, 49(66): 7319-7321. |
29 | QIAN J, BROUWER A M. Excited state proton transfer in the cinchona alkaloid cupreidine[J]. Phys Chem Chem Phys, 2010, 12(39): 12562-12569. |
30 | KIM T I, KIM Y. A water indicator strip: instantaneous fluorogenic detection of water in organic solvents, drugs, and foodstuffs[J]. Anal Chem, 2017, 89(6): 3768-3772. |
31 | PYO M, LEE J, BAEK W, et al. Sweat pore mapping using a fluorescein-polymer composite film for fingerprint analysis[J]. Chem Commun, 2015, 51(15): 3177-3180. |
32 | SINGH V K, CHITUMALLA R K, RAVI O K, et al. Inkjet-printable hydrochromic paper for encrypting information and anticounterfeiting[J]. ACS Appl Mater Interfaces, 2017, 9(38): 33071-33079. |
33 | LOU Q, QU S, JING P, et al. Water-triggered luminescent “nano-bombs” based on supra-(carbon nanodots)[J]. Adv Mater, 2015, 27(8): 1389-1394. |
34 | WANG D, ZHAO H, LI H, et al. A fluorescent “glue” of water triggered by hydrogen-bonding cross-linking[J]. J Mater Chem C, 2016, 4(47): 11050-11054. |
35 | JIA X R, YU H J, CHEN J, et al. Stimuli-responsive properties of aggregation-induced-emission compounds containing a 9,10-distyrylanthracene moiety[J]. Chem Eur J, 2018, 24(71): 19053-19059. |
36 | YU X, WU L, YANG D, et al. Synergistic n-heterocyclic carbene/palladium-catalyzed umpolung 1,4-addition of aryl iodides to enals[J]. Angew Chem Int Ed, 2020, 59: 2-8. |
37 | JU L, GAO W, ZHANG J, et al. A new absorption/fluorescence dual-mode hydrochromic dye for water-jet printing and anti-counterfeiting applications[J]. J Mater Chem C, 2020, 8(8): 2806-2811. |
38 | RAMETTE R W, SANDELL E B. Rhodamine B equilibria[J]. J Am Chem Soc, 1956, 78(19): 4872-4878. |
[1] | 杨倩, 张杨, 赖明阳, 郭琳, 郏建波. 不同热解温度下制备的磁性生物炭对罗丹明B的吸附性能[J]. 应用化学, 2023, 40(2): 288-298. |
[2] | 鞠乐, 张婷, 秦天游, 盛兰, 张晓安. 通过开关单元调节赋予荧烷水致变色性质及喷水打印应用[J]. 应用化学, 2019, 36(2): 137-145. |
[3] | 鞠乐, 张婷, 秦天游, 盛兰, 张晓安. 通过开关单元调节赋予荧烷水致变色性质及喷水打印应用[J]. 应用化学, 2019, 36(2): 0-0. |
[4] | 李桂水, 胡旭敏, 程丽君, 郝亮. 表面活性剂修饰碳酸氧铋的制备及光催化性能[J]. 应用化学, 2018, 35(6): 692-699. |
[5] | 王翠, 张飞云, 吕荣文, 张淑芬. 金纳米颗粒表面能量转移及巯基化合物的检测[J]. 应用化学, 2018, 35(1): 60-67. |
[6] | 侯淑华, 刘冬, 曲忠国, 钟克利, 边延江, 汤立军. 一种罗丹明衍生物的合成及其对三价金属离子(Fe3+、Cr3+和Al3+)的识别[J]. 应用化学, 2017, 34(5): 606-610. |
[7] | 王松, 李阳, 李飞, 程晓红. 不同形貌氧化锌的微波水热法制备及其光催化性能[J]. 应用化学, 2017, 34(2): 220-224. |
[8] | 黄齐, 宋昊翰, 王晓, 庞兰芳, 周艳梅. 一种2-乙酰基吡嗪-罗丹明B衍生物的合成及其对Ni2+的识别[J]. 应用化学, 2017, 34(12): 1468-1473. |
[9] | 王浩然, 杨维成, 涂亚辉, 杨超, 方超, 李美华, 罗勇, 吴范宏. 稳定同位素标记D4-罗丹明B的合成及表征[J]. 应用化学, 2016, 33(8): 939-944. |
[10] | 邹晓梅, 陈艳, 朱兴旺, 刘高鹏, 郭心玮, 雷琴, 柯小雪, 李帅星, 华英杰, 王崇太. Keggin型铬取代的磷钨杂多阴离子/二氧化钛纳米膜光催化剂的制备及可见光催化性能[J]. 应用化学, 2016, 33(3): 320-329. |
[11] | 艾力江, 吐尔地, 陈沛, 阿不都卡德尔, 阿不都克尤木, 木合塔尔, 吐尔洪. 铋掺杂介孔二氧化钛的制备及光催化动力学[J]. 应用化学, 2016, 33(2): 213-220. |
[12] | 孙琳琳, 周叶红, 王斐, 双少敏, 董川. 羧甲基-β-环糊精功能化的四氧化三铁磁性纳米复合物对罗丹明B的吸附性能[J]. 应用化学, 2015, 32(1): 110-117. |
[13] | 杨杨, 高超颖, 许良, 段莉梅, 李斌. 多枝罗丹明酰肼类荧光探针的研究进展与应用[J]. 应用化学, 2014, 31(10): 1123-1134. |
[14] | 李梦婷, 刘海城, 曾星, 徐孝南, 邹晓梅, 华英杰, 王崇太. Keggin型铬取代杂多阴离子/D301R可见光催化性能[J]. 应用化学, 2014, 31(08): 965-970. |
[15] | 刘玉婷, 陈彦安, 邢彦军. 季膦-磷钨酸室温离子液体的合成及光催化降解罗丹明B[J]. 应用化学, 2014, 31(04): 431-436. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||