1 |
MARTIN K L, SILVA D, SIMÕES R P, et al. Evaluation of reduced graphene oxide modified with antimony and copper nanoparticles for levofloxacin oxidation[J]. Electroanalysis, 2018, 30(9): 2066-2076.
|
2 |
WEN W, ZHAO D M, ZHANG X H, et al. One-step fabrication of poly(o-aminophenol)/multi-walled carbon nanotubes composite film modified electrode and its application for levofloxacin determination in pharmaceuticals[J]. Sens Actuators B: Chem, 2012, 174: 202-209.
|
3 |
SUYANA P, PRIYANKA G, MIDHUN M. Photoregenerable, bifunctional granules of carbon-doped g-C3N4, as adsorptive photocatalyst for the efficient removal of tetracycline antibiotic[J]. ACS Sustain Chem Eng, 2017, 5(2): 1610-1618.
|
4 |
CHENG G, WU H, HUANG Y. Simultaneous determination of malondialdehyde and ofloxacin in plasma using an isocratic high-performance liquid chromatography/fluorescence detection system[J]. Anal Chim Acta, 2008, 616(2): 230-234.
|
5 |
ULU S. Rapid and sensitive spectrofluorimetric determination of enrofloxacin, levofloxacin and of loxacin with 2,3,5,6-tetrachloro-p-benzoquinone[J]. Spectrochim Acta Part A, 2009, 72(5): 1038-1042.
|
6 |
AWADALLAH B, SCHMIDT P, WAHL M. Quantitation of the enantiomers of ofloxacin by capillary electrophoresis in the parts per billion concentration range for in vitro drug absorption studies[J]. J Chromatogr A, 2003, 988(1): 135-143.
|
7 |
MANEL R, BRAHIM M B, SAME Y. Electrochemical determination of levofloxacin antibiotic in biological samples using boron doped diamond electrode[J]. Electroanal Chem, 2017, 794: 175-181.
|
8 |
XU Y X, SHENG K X, LI C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7): 4324-4330.
|
9 |
NIU Z Q, CHEN J, HNG H H,et al. A leavening strategy to prepare reduced graphene oxide foams[J]. Adv Mater, 2012, 24(30): 4144-4150.
|
10 |
LIANG W T, RONG Y Q, FAN L F, et al. 3D graphene/hydroxypropyl-β-cyclodextrin nanocomposite as an electrochemical chiral sensor for the recognition of tryptophan enantiomers[J]. J Mater Chem C, 2018, 6(47): 12822-12829.
|
11 |
LIANG W T, RONG Y Q, FAN L F, et al. Simultaneous electrochemical sensing of serotonin, dopamine and ascorbic acid by using a nanocomposite prepared from reduced graphene oxide, Fe3O4 and hydroxypropyl-β-cyclodextrin[J]. Microchim Acta, 2019, 186: 751.
|
12 |
ABBEHAUSEN C, FORMIGA A L B, SABADINI E, et al. A β-cyclodextrin/siloxane hybrid polymer: synthesis, characterization and inclusion complexes[J]. J Braz Chem Soc, 2010, 21(10): 1867-1876.
|
13 |
YU G C, JIE K C, HUANG F H. Supramolecular amphiphiles based on host-guest molecular recognition motifs[J]. Chem Rev, 2015, 115: 7240-7303.
|
14 |
杨序纲, 吴琪琳. 拉曼光谱的分析与应用[M]. 北京: 国防工业出版社, 211-214.
|
|
YANG X G, WU Q L. Ramam spectroscopy analysis and application[M]. Beijing: National Defence Industry Press, 211-214.
|
15 |
ZHAO J, CHEN G, ZHU L, et al. Graphene quantum dots-based platform for the fabrication of electrochemical biosensors[J]. Electrochem Commun, 2011, 13(1): 31-33.
|
16 |
HUANG Y, KANG Q. Synthesis of conjugates of β-cyclodextrin with polyamidoamine dendrimers and their molecular inclusion interaction with levofloxacin lactate[J]. J Inclusion Phenom Macrocyclic Chem,2012, 72(1/2): 55-61.
|
17 |
TANG L, TONG Y, ZHENG R. Ag nano-particles and electrospun CeO2-Au composite nanofibers modified glassycarbon electrode for determination of levofloxacin[J]. Sens Actuators B: Chem, 2014, 203: 95-101.
|
18 |
HUANG J Y, BAO T, HU T X, et al. Voltammetric determination of levofloxacin using a glassy carbon electrode modified with poly(o-aminophenol) and graphene quantum dots[J]. Microchim Acta, 2017, 184: 127-135.
|
19 |
JIN Y F, XU G, LI X B, et al. Fast cathodic reduction electrodeposition of a binder-free cobalt-doped Ni-MOF film for directly sensing of levofloxacin[J]. J Alloys Compd, 2021, 851: 156823.
|
20 |
WEN W, ZHAO D M, ZHANG X H, et al. One-step fabrication of poly(o-aminophenol)/multi-walled carbon nanotubes composite film modi-fied electrode and its application for levofloxacin determination inpharmaceuticals[J]. Sens Actuators B: Chem, 2012, 174: 202-209.
|
21 |
MARTIN K L, SILVA D, SIMO R P, et al. Evaluation of reduced graphene oxide modified with antimony and copper nanoparticles for levofloxacin oxidation[J]. Electroanalysis, 2018, 30(9): 2066-2076.
|
22 |
司晓晶, 朱文菁, 李香, 等. 聚对氨基苯磺酸/石墨烯电化学修饰电极检测药物中氧氟沙星[J]. 应用化学, 2020, 37(6):726-732.
|
|
SI X J, ZHU W J, LI X, et al. Determination of ofloxacin in medicine via poly(p-aminobenzene sulfonic acid)/graphene electrochemical modified electrode[J]. Chinese J Appl Chem, 2020, 37(6): 726-732.
|
23 |
LIU C Q, XIE D, LIU P, et al.Voltammetric determination of levofloxacin using silver nanoparticles deposited on a thin nickel oxide porous film[J]. Microchim Acta, 2019, 186(1): 21.
|
24 |
WANG X, SUN G, ROUTH P, et al. Heteroatom-doped graphene materials: syntheses, properties and applications[J]. Chem Soc Rev, 2014, 43: 7067-7098.
|