Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (9): 1259-1270.DOI: 10.19894/j.issn.1000-0518.240124
• Review • Previous Articles
Zhao-Yang DIAO, Li LIU, Chen-Ming LI, Huan-Li SUN()
Received:
2024-04-15
Accepted:
2024-08-15
Published:
2024-09-01
Online:
2024-10-09
Contact:
Huan-Li SUN
About author:
sunhuanli@suda.edu.cnSupported by:
CLC Number:
Zhao-Yang DIAO, Li LIU, Chen-Ming LI, Huan-Li SUN. Research Progress on the Application of Nanomedicines in the Treatment of Acute Myeloid Leukemia[J]. Chinese Journal of Applied Chemistry, 2024, 41(9): 1259-1270.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.240124
Fig.2 Schematic showing the preparation of ABT199 and TW37 inhibitors co-loaded nanoparticles (NPAT) from the self-assembly of poly(ethylene glycol)-b-poly(L-boronophenylalanine-co-L-tyrosine) (PEG-b-P(BPA-co-Tyr)) for synergistic anti-AML therapy[43]
Nanoparticles | Target | Ligand | Drug | Mouse model | Ref. |
---|---|---|---|---|---|
Polymeric prodrug | CD44 | HA | 6-Mercaptopurine | Subcutaneous OCI/AML-2 | [ |
HA-EGCG micelle | CD44 | HA | Sorafenib | Orthotopic AML-PDX | [ |
Liposome | CD44 | HA | Curcumin | Orthotopic KG-1 | [ |
Lipid-polymer hybrid Nanoparticle | CD44 | HA | DOX & gallic acid | Subcutaneous HL-60/ADR | [ |
Polymersome | CD44 | A6 | Vincristine sulfate | Orthotopic MV4-11-Luc | [ |
T22-GFP-H6 | CXCR4 | T22 peptide | Cytarabine | Orthotopic THP-1-Luc | [ |
T22-GFP-H6 | CXCR4 | T22 peptide | MMAE | Orthotopic THP-1-Luc | [ |
T22-mRTA-H6 | CXCR4 | T22 peptide | Ricin | Orthotopic THP-1-Luc | [ |
T22-DITOX-H6 | CXCR4 | T22 peptide | Diphtheria toxin | Orthotopic THP-1-Luc | [ |
Polymersome | CD71 | Transferrin | Volasertib | Orthotopic MV4-11-Luc | [ |
Ferritin | CD71 | Ferritin | Arsenic trioxide | Orthotopic HL-60-Luc | [ |
Ferritin heavy chain (HFn) | CD71 | HFn | Cytarabine | Orthotopic HL-60-Luc | [ |
Polymersome | CD38 | Daratumumab | Vincristine sulfate | Orthotopic Molm-13-Luc & MV4-11 Orthotopic Molm-13-Luc & MV4-11 | [ |
Polymersome | CD38 | Daratumumab | Volasertib | [ | |
Liposome | CD33 | Anti-CD33 scFv | GTI-2040 | Subcutaneous Kasumi-1 | [ |
Protamine vesicles | CD33 | Anti-CD33 antibody | DNMT3A/FLT3-siRNA | Subcutaneous OCI/AML2, KG1 & MV4-11 | [ |
Fusion protein | CD64 | anti-CD64 scFv | HO-1 siRNA | Orthotopic U937 | [ |
Lipid-polymer hybrid nanoparticle | CD64 | anti-CD64 scFv | SnMP | Orthotopic U937 | [ |
Table 1 Actively targeted nanomedicines for the treatment of AML
Nanoparticles | Target | Ligand | Drug | Mouse model | Ref. |
---|---|---|---|---|---|
Polymeric prodrug | CD44 | HA | 6-Mercaptopurine | Subcutaneous OCI/AML-2 | [ |
HA-EGCG micelle | CD44 | HA | Sorafenib | Orthotopic AML-PDX | [ |
Liposome | CD44 | HA | Curcumin | Orthotopic KG-1 | [ |
Lipid-polymer hybrid Nanoparticle | CD44 | HA | DOX & gallic acid | Subcutaneous HL-60/ADR | [ |
Polymersome | CD44 | A6 | Vincristine sulfate | Orthotopic MV4-11-Luc | [ |
T22-GFP-H6 | CXCR4 | T22 peptide | Cytarabine | Orthotopic THP-1-Luc | [ |
T22-GFP-H6 | CXCR4 | T22 peptide | MMAE | Orthotopic THP-1-Luc | [ |
T22-mRTA-H6 | CXCR4 | T22 peptide | Ricin | Orthotopic THP-1-Luc | [ |
T22-DITOX-H6 | CXCR4 | T22 peptide | Diphtheria toxin | Orthotopic THP-1-Luc | [ |
Polymersome | CD71 | Transferrin | Volasertib | Orthotopic MV4-11-Luc | [ |
Ferritin | CD71 | Ferritin | Arsenic trioxide | Orthotopic HL-60-Luc | [ |
Ferritin heavy chain (HFn) | CD71 | HFn | Cytarabine | Orthotopic HL-60-Luc | [ |
Polymersome | CD38 | Daratumumab | Vincristine sulfate | Orthotopic Molm-13-Luc & MV4-11 Orthotopic Molm-13-Luc & MV4-11 | [ |
Polymersome | CD38 | Daratumumab | Volasertib | [ | |
Liposome | CD33 | Anti-CD33 scFv | GTI-2040 | Subcutaneous Kasumi-1 | [ |
Protamine vesicles | CD33 | Anti-CD33 antibody | DNMT3A/FLT3-siRNA | Subcutaneous OCI/AML2, KG1 & MV4-11 | [ |
Fusion protein | CD64 | anti-CD64 scFv | HO-1 siRNA | Orthotopic U937 | [ |
Lipid-polymer hybrid nanoparticle | CD64 | anti-CD64 scFv | SnMP | Orthotopic U937 | [ |
Fig.4 (A) Schematic illustration of exogenous ATRA in combination with daratumumab-directed polymersomal vincristine sulfate (DPV) for CD38-targeted chemotherapy of AML; CD38 levels in (B) four AML cell lines and (C) primary AML cells isolated from patients before and after ATRA stimulation. hCD38(PE): phycoerythrin anti-human CD38 antibody; (D) Survival curves of orthotopic MV4-11 AML bearing mice following different treatments[59]
1 | DINARDO C D, ERBA H P, FREEMAN S D, et al. Acute myeloid leukaemia[J]. Lancet, 2023, 401(10393): 2073-2086. |
2 | SHALLIS R M, WANG R, DAVIDOFF A, et al. Epidemiology of acute myeloid leukemia: recent progress and enduring challenges[J]. Blood Rev, 2019, 36: 70-87. |
3 | SHORT N J, RYTTING M E, CORTES J E. Acute myeloid leukaemia[J]. Lancet, 2018, 392(10147): 593-606. |
4 | TANG K, SCHUH A C, YEE K W L. 3+7 combined chemotherapy for acute myeloid leukemia: is it time to say goodbye?[J]. Curr Oncol Rep, 2021, 23(10): 120. |
5 | SCHAEFER J, CASSIDY S, WEBSTER R M. The acute myeloid leukaemia market[J]. Nat Rev Drug Discov, 2020, 19(4): 233-234. |
6 | BHANSALI R S, PRATZ K W, LAI C. Recent advances in targeted therapies in acute myeloid leukemia[J]. J Hematol Oncol, 2023, 16(1): 29. |
7 | JEN E Y, KO C W, LEE J E, et al. FDA approval: gemtuzumab ozogamicin for the treatment of adults with newly diagnosed CD33-positive acute myeloid leukemia[J]. Clin Cancer Res, 2018, 24(14): 3242-3246. |
8 | 丁建勋, 杨佳臻. 抗肿瘤纳米材料[J]. 应用化学, 2022, 39(5): 855-856. |
DING J X, YANG J Z. Anti-tumor nanomaterials[J]. Chin J Appl Chem, 2022, 39(5): 855-856. | |
9 | 陈方敏, 刘小英, 于海军, 等. 基于环糊精的抗肿瘤药物主客体递送系统研究进展[J]. 应用化学, 2023, 40(7): 964-975. |
CHEN F M, LIU X Y, YU H J, et al. Advancement of cyclodextrin-based host-guest drug delivery system for antitumor therapy[J]. Chin J Appl Chem, 2023, 40(7): 964-975. | |
10 | ALLEGRA A, DI GIOACCHINO M, TONACCI A, et al. Nanomedicine for immunotherapy targeting hematological malignancies: current approaches and perspective[J]. Nanomaterials, 2021, 11(11): 2792. |
11 | JANANI G, GIRIGOSWAMI A, GIRIGOSWAMI K. Advantages of nanomedicine over the conventional treatment in Acute myeloid leukemia[J]. J Biomater Sci-Polym Ed, 2024, 35(3): 415-441. |
12 | CI T Y, ZHANG W T, QIAO Y Y, et al. Delivery strategies in treatments of leukemia[J]. Chem Soc Rev, 2022, 51(6): 2121-2144. |
13 | KANTARJIAN H, RAVANDI F, O'BRIEN S, et al. Intensive chemotherapy does not benefit most older patients (age 70 years or older) with acute myeloid leukemia[J]. Blood, 2010, 116(22): 4422-4429. |
14 | CARTER J L, HEGE K, YANG J, et al. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy[J]. Signal Transduct Target Ther, 2020, 5(1): 288. |
15 | ARAI Y, CHI S, MINAMI Y, et al. FLT3-targeted treatment for acute myeloid leukemia[J]. Int J Hematol, 2022, 116(3): 351-363. |
16 | DAVER N, SCHLENK R F, RUSSELL N H, et al. Targeting FLT3 mutations in AML: review of current knowledge and evidence[J]. Leukemia, 2019, 33(2): 299-312. |
17 | STONE R M, MANDREKAR S J, SANFORD B L, et al. Midostaurin plus chemotherapy for acute myeloid leukemia with a FLT3 mutation[J]. N Engl J Med, 2017, 377(5): 454-464. |
18 | FIGUEROA M E, ABDEL-WAHAB O, LU C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation[J]. Cancer Cell, 2010, 18(6): 553-567. |
19 | KIM E S. Enasidenib: first global approval[J]. Drugs, 2017, 77(15): 1705-1711. |
20 | DHILLON S. Ivosidenib: first global approval[J]. Drugs, 2018, 78(14): 1509-1516. |
21 | SHORT N J, KONOPLEVA M, KADIA T M, et al. Advances in the treatment of acute myeloid leukemia: new drugs and new challenges[J]. Cancer Discov, 2020, 10(4): 506-525. |
22 | JONAS B A, POLLYEA D A. How we use venetoclax with hypomethylating agents for the treatment of newly diagnosed patients with acute myeloid leukemia[J]. Leukemia, 2019, 33(12): 2795-2804. |
23 | CORTES J E, HEIDEL F H, HELLMANN A, et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome[J]. Leukemia, 2019, 33(2): 379-389. |
24 | DOHNER H, WEI A H,LOWENBERG B. Towards precision medicine for AML[J]. Nat Rev Clin Oncol, 2021, 18(9): 577-590. |
25 | HOY S M. Glasdegib: first global approval[J]. Drugs, 2019, 79(2): 207-213. |
26 | DRAGO J Z, MODI S, CHANDARLAPATY S. Unlocking the potential of antibody-drug conjugates for cancer therapy[J]. Nat Rev Clin Oncol, 2021, 18(6): 327-344. |
27 | FU Z W, LI S J, HAN S F, et al. Antibody drug conjugate: the “biological missile” for targeted cancer therapy[J]. Signal Transduct Target Ther, 2022, 7(1): 93. |
28 | DUMONTET C, REICHERT J M, SENTER P D, et al. Antibody-drug conjugates come of age in oncology[J]. Nat Rev Drug Discov, 2023, 22(8): 641-661. |
29 | GRIFFIN J D, LINCH D, SABBATH K, et al. A monoclonal-antibody reactive with normal and leukemic human myeloid progenitor cells[J]. Leukemia Res, 1984, 8(4): 521-534. |
30 | MUÑOZ L, NOMDEDÉU J F, LÓPEZ O, et al. Interleukin-3 receptor α chain (CD123) is widely expressed in hematologic malignancies[J]. Haematologica, 2001, 86(12): 1261-1269. |
31 | KUNG SUTHERLAND M S, WALTER R B, JEFFREY S C, et al. SGN-CD33A: a novel CD33-targeting antibody-drug conjugate using a pyrrolobenzodiazepine dimer is active in models of drug-resistant AML[J]. Blood, 2013, 122(8): 1455-1463. |
32 | STEIN E M, WALTER R B, ERBA H P, et al. A phase 1 trial of vadastuximab talirine as monotherapy in patients with CD33-positive acute myeloid leukemia[J]. Blood, 2018, 131(4): 387-396. |
33 | ERBA H P, LEVY M Y, VASU S, et al. A phase 1b study of vadastuximab talirine in combination with 7+3 induction therapy for patients with newly diagnosed acute myeloid leukemia (AML)[J]. Blood, 2016, 128(22): 211. |
34 | KOVTUN Y, JONES G E, ADAMS S, et al. A CD123-targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells[J]. Blood Adv, 2018, 2(8): 848-858. |
35 | LARGE D E, ABDELMESSIH R G, FINK E A, et al. Liposome composition in drug delivery design, synthesis, characterization, and clinical application[J]. Adv Drug Delivery Rev, 2021, 176: 113851. |
36 | WANG S, CHEN Y, GUO J, et al. Liposomes for tumor targeted therapy: a review[J]. Int J Mol Sci, 2023, 24(3): 2643. |
37 | 韩旭, 丁冠宇, 董青, 等. 基于脂质体的纳米基因载体的研究进展[J]. 应用化学, 2018, 35(7): 735-744. |
HAN X, DING G Y, DONG Q, et al. Research progress of nano-gene carriers based on liposomes[J]. Chin J Appl Chem, 2018, 35(7): 735-744. | |
38 | KRAUSS A C, GAO X, LI L, et al. FDA approval summary: (daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia[J]. Clin Cancer Res, 2019, 25(9): 2685-2690. |
39 | NGUYEN T M, JAMBHRUNKAR M, WONG S S, et al. Targeting acute myeloid leukemia using sphingosine kinase 1 inhibitor-loaded liposomes[J]. Mol Pharmaceut, 2023, 20(8): 3937-3946. |
40 | MITCHELL M J, BILLINGSLEY M M, HALEY R M, et al. Engineering precision nanoparticles for drug delivery[J]. Nat Rev Drug Discov, 2021, 20(2): 101-124. |
41 | LIANG B, JIANG D W, PAN L Q, et al. Lipase-triggered drug release from BCL2 inhibitor ABT-199-loaded nanoparticles to elevate anti-leukemic activity through enhanced drug targeting on the mitochondrial membrane[J]. Acta Biomater, 2022, 145: 246-259. |
42 | MEHROTRA N, ANEES M, TIWARI S, et al. Polylactic acid based polymeric nanoparticle mediated co-delivery of navitoclax and decitabine for cancer therapy[J]. Nanomed-Nanotechnol Biol Med, 2022, 47: 102627. |
43 | XIE J, ZHAO X, ZHANG P, et al. Codelivery of BCL2 and MCL1 inhibitors enabled by phenylboronic acid-functionalized polypeptide nanovehicles for synergetic and potent therapy of acute myeloid leukemia[J]. Adv Sci, 2023, 10(8): 2204866. |
44 | XU X, WANG J, TONG T, et al. A self-assembled leucine polymer sensitizes leukemic stem cells to chemotherapy by inhibiting autophagy in acute myeloid leukemia[J]. Haematologica, 2022, 107(10): 2344-2355. |
45 | YU Y, MENG Y, XU X, et al. A ferroptosis-inducing and leukemic cell-targeting drug nanocarrier formed by redox-responsive cysteine polymer for acute myeloid leukemia therapy[J]. ACS Nano, 2023, 17(4): 3334-3345. |
46 | GU W X, QU R B, MENG F H, et al. Polymeric nanomedicines targeting hematological malignancies[J]. J Control Release, 2021, 337: 571-588. |
47 | QIU J, CHENG R, ZHANG J, et al. Glutathione-sensitive hyaluronic acid-mercaptopurine prodrug linked via carbonyl vinyl sulfide: a robust and CD44-targeted nanomedicine for leukemia[J]. Biomacromolecules, 2017, 18(10): 3207-3214. |
48 | BAE K H, LAI F, MONG J, et al. Bone marrow-targetable green tea catechin-based micellar nanocomplex for synergistic therapy of acute myeloid leukemia[J]. J Nanobiotechnol, 2022, 20(1): 481. |
49 | SUN D, ZHOU J K, ZHAO L S, et al. Novel curcumin liposome modified with hyaluronan targeting CD44 plays an anti-leukemic role in acute myeloid leukemia[J]. ACS Appl Mater Interfaces, 2017, 9(20): 16858-16869. |
50 | SHAO Y P, LUO W D, GUO Q Y, et al. In vitro and in vivo effect of hyaluronic acid modified, doxorubicin and gallic acid co-delivered lipid-polymeric hybrid nano-system for leukemia therapy[J]. Drug Des Dev Ther, 2019, 13: 2043-2055. |
51 | GU W X, LIU T H, FAN D Y, et al. A6 peptide-tagged, ultra-small and reduction-sensitive polymersomal vincristine sulfate as a smart and specific treatment for CD44+acute myeloid leukemia[J]. J Control Release, 2021, 329: 706-716. |
52 | PALLARÈS V, UNZUETA U, FALGÀS A, et al. A multivalent Ara-C-prodrug nanoconjugate achieves selective ablation of leukemic cells in an acute myeloid leukemia mouse model[J]. Biomaterials, 2022, 280: 121258. |
53 | PALLARÈS V, UNZUETA U, FALGÀS A, et al. An auristatin nanoconjugate targeting CXCR4+ leukemic cells blocks acute myeloid leukemia dissemination[J]. J Hematol Oncol, 2020, 13(1): 36. |
54 | DÍAZ R, PALLARÈS V, CANO-GARRIDO O, et al. Selective CXCR4 cancer cell targeting and potent antineoplastic effect by a nanostructured version of recombinant ricin[J]. Small, 2018, 14(26): 1800665. |
55 | PALLARÈS V, NÚÑEZ Y, SÁNCHEZ-GARCÍA L, et al. Antineoplastic effect of a diphtheria toxin-based nanoparticle targeting acute myeloid leukemia cells overexpressing CXCR4[J]. J Control Release, 2021, 335: 117-129. |
56 | XIA Y F, AN J N, LI J Y, et al. Transferrin-guided intelligent nanovesicles augment the targetability and potency of clinical PLK1 inhibitor to acute myeloid leukemia[J]. Bioact Mater, 2023, 21: 499-510. |
57 | WANG C L, ZHANG W, HE Y J, et al. Ferritin-based targeted delivery of arsenic to diverse leukaemia types confers strong anti-leukaemia therapeutic effects[J]. Nat Nanotechnol, 2021, 16(12): 1413-1423. |
58 | WU X Z, JIAO Z G, ZHANG J Y, et al. Expression of TFRC helps to improve the antineoplastic effect of Ara-C on AML cells through a targeted delivery carrier[J]. J Nanobiotechnol, 2023, 21(1): 126. |
59 | YUE S J, AN J N, ZHANG Y F, et al. Exogenous antigen upregulation empowers antibody targeted nanochemotherapy of leukemia[J]. Adv Mater, 2023, 35(32): 2209984. |
60 | DU J W, YUE S J, LI C M, et al. Exogenous CD38 upregulation enables high-efficacy dually cascade targeted molecular therapy of leukemia[J]. Nano Today, 2023, 50: 101872. |
61 | LI H, XU S L, QUAN J S, et al. CD33-targeted lipid nanoparticles (aCD33LNs) for therapeutic delivery of GTI-2040 to acute myelogenous leukemia[J]. Mol Pharmaceut, 2015, 12(6): 2010-2018. |
62 | BAEUMER N, SCHELLER A, WITTMANN L, et al. Electrostatic anti-CD33-antibody-protamine nanocarriers as platform for a targeted treatment of acute myeloid leukemia[J]. J Hematol Oncol, 2022, 15(1): 171. |
63 | YONG S B, CHUNG J Y, KIM S S, et al. CD64-targeted HO-1 RNA interference enhances chemosensitivity in orthotopic model of acute myeloid leukemia and patient-derived bone marrow cells[J]. Biomaterials, 2020, 230: 119651. |
64 | YONG S B, KIM J, CHUNG J Y, et al. Heme oxygenase 1-targeted hybrid nanoparticle for chemo- and immuno-combination therapy in acute myelogenous leukemia[J]. Adv Sci, 2020, 7(13): 2000487. |
65 | JIN L Q, HOPE K J, ZHAI Q L, et al. Targeting of CD44 eradicates human acute myeloid leukemic stem cells[J]. Nat Med, 2006, 12(10): 1167-1174. |
66 | PELED A, KLEIN S, BEIDER K, et al. Role of CXCL12 and CXCR4 in the pathogenesis of hematological malignancies[J]. Cytokine, 2018, 109: 11-16. |
67 | RIVERA D, ALVARADO Y, GARCIA-MANERO G, et al. Clinical characteristics and outcomes of patients diagnosed with acute myeloid leukemia with expression of CD71[J]. Blood, 2021, 138: 151023. |
68 | VAN DE DONK N W C J, RICHARDSON P G, MALAVASI F. CD38 antibodies in multiple myeloma: back to the future[J]. Blood, 2018, 131(1): 13-29. |
69 | KISHIMOTO H, HOSHINO S, OHORI M, et al. Molecular mechanism of human CD38 gene expression by retinoic acid-identification of retinoic acid response element in the first intron[J]. J Biol Chem, 1998, 273(25): 15429-15434. |
70 | SPERR W R, FLORIAN S, HAUSWIRTH A W, et al. CD33 as a target of therapy in acute myeloid leukemia: current status and future perspectives[J]. Leuk Lymphoma, 2005, 46(8): 1115-1120. |
71 | SADEGHI M, FATHI M, NAVASHENAQ J G, et al. The prognostic and therapeutic potential of HO-1 in leukemia and MDS[J]. Cell Commun Signal, 2023, 21(1): 57. |
72 | WU H, GAO Y, MA J, et al. Cytarabine delivered by CD44 and bone targeting redox-sensitive liposomes for treatment of acute myelogenous leukemia[J]. Regen Biomater, 2022, 9: rbac058. |
73 | SUN S, ZOU H, LI L, et al. CD123/CD33 dual-antibody modified liposomes effectively target acute myeloid leukemia cells and reduce antigen-negative escape[J]. Int J Pharm, 2019, 568: 118518. |
74 | WANG X Q, HUANG R H, WU W, et al. Amplifying STING activation by bioinspired nanomedicine for targeted chemo-and immunotherapy of acute myeloid leukemia[J]. Acta Biomater, 2023, 157: 381-394. |
75 | LI Q, SU R, BAO X, et al. Glycyrrhetinic acid nanoparticles combined with ferrotherapy for improved cancer immunotherapy[J]. Acta Biomater, 2022, 144: 109-120. |
76 | CHEN M, QIAO Y Y, CAO J, et al. Biomimetic doxorubicin/ginsenoside co-loading nanosystem for chemoimmunotherapy of acute myeloid leukemia[J]. J Nanobiotechnol, 2022, 20(1): 273. |
77 | KONG F, HE H L, BAI H Y, et al. A biomimetic nanocomposite with enzyme-like activities and CXCR4 antagonism efficiently enhances the therapeutic efficacy of acute myeloid leukemia[J]. Bioact Mater, 2022, 18: 526-538. |
[1] | Yue ZHANG, Rui LIANG, Can-Nan ZHAO, Chun-Mei LI. Construction of Graphene Oxide-DNA Nanoprobe for Adenosine 5-Triphosphate Detection and Drug Delivery [J]. Chinese Journal of Applied Chemistry, 2024, 41(1): 118-127. |
[2] | Xiao-Ying LIU, Fang-Min CHEN, Hui-Juan ZHANG, Hai-Jun YU. Advancement of Cyclodextrin-Based Host-Guest Drug Delivery System for Antitumor Therapy [J]. Chinese Journal of Applied Chemistry, 2023, 40(7): 964-975. |
[3] | Xin-Tao XIE, Sang-Ni JIANG, Xi-Fei YU. Selective Binding pH Responsive Liposomes with Phenylboronic Acid for Drug Delivery [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 860-870. |
[4] | Yuan-Hua ZHANG, Sheng-Ran LI, Xi-Fei YU. Fluoride-Functionalized Choline Phosphate Liposomes for Oral Insulin Administration [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 730-742. |
[5] | Hui DU, Chen-Yang YAO, Hao PENG, Bo JIANG, Shun-Xiang LI, Jun-Lie YAO, Fang ZHENG, Fang YANG, Ai-Guo WU. Applications of Transition Metal⁃doped Iron⁃based Nanoparticles in Biomedicine [J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 391-406. |
[6] | CHENG Cui-Lin, MA Jia-Pei, WANG Wei-Chen, WANG Bo-Yang, WANG Zhen-Yu. Application of Electrospinning Technology of Natural Products in Biomedicine [J]. Chinese Journal of Applied Chemistry, 2021, 38(6): 605-614. |
[7] | XIA Ying, XIA Jing, CUI Hongyan, QIAN Ming, ZHANG Liuwei, CHEN Qixian, WANG Jingyun. Homologous Cell Membrane Coated Smart Drug-Release Nanoparticles for Targeted Hepatocellular Carcinoma Therapy [J]. Chinese Journal of Applied Chemistry, 2020, 37(1): 69-79. |
[8] | FAN Ye, HAN Yichen, XIA Yongmei, BO Chunling, WANG Shuyu, FANG Yun. Investigation on Self-assembly of Nanocontainers by Vesiculation of Conjugated Linoleic Acid and Sodium Alginate and Their Drug Delivery Behavior [J]. Chinese Journal of Applied Chemistry, 2018, 35(12): 1478-1484. |
[9] | HUANG Qiongwei,ZHAO Li,SONG Zhiming,FENG Xiangru,DING Jianxun. Phenylboronic Acid-Based Glucose-Sensitive Polymer Nanocarriers Used as Drug Delivery Systems [J]. Chinese Journal of Applied Chemistry, 2017, 34(7): 733-743. |
[10] | JIAN Yong, DING Ru, LIU Shu, LIU Zhongying, SONG Fengrui, LIU Zhiqiang. Comparison of the Pharmacokinetics Difference Between Acanthopanax Leaf Flavonoids Liposome and Acanthopanax Leaf Drop Pills [J]. Chinese Journal of Applied Chemistry, 2017, 34(1): 118-122. |
[11] | ZHANG Yi, WU Lingbo, HU Qian, CHEN Baoxin, Wu Boyang, XUE Wei . Functionally Modified Hyperbranched Polyglycerols for Drug Delivery [J]. Chinese Journal of Applied Chemistry, 2015, 32(4): 367-378. |
[12] | WU Cheng-Yao1, XIE Jian-Gang1,2, QUAN Jing1*, ZHU Li-Min1*, BAO Jin-Yue3, ZHOU Hong-Qiang3. Preparation and Sustained-release of Ketoprofen Polymeric Prodrug with Glucose Pendant [J]. Chinese Journal of Applied Chemistry, 2010, 27(12): 1386-1391. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||