
Chinese Journal of Applied Chemistry ›› 2024, Vol. 41 ›› Issue (9): 1248-1258.DOI: 10.19894/j.issn.1000-0518.240080
• Review • Previous Articles
Han-Bang LIU(), Wen-Yue HAO, Jun-Hui GUO, Chang LIU, Feng-Lai WANG, Shao-Zhong PENG
Received:
2024-03-20
Accepted:
2024-07-22
Published:
2024-09-01
Online:
2024-10-09
Contact:
Han-Bang LIU
About author:
liuhanbang.fshy@sinopec.comSupported by:
CLC Number:
Han-Bang LIU, Wen-Yue HAO, Jun-Hui GUO, Chang LIU, Feng-Lai WANG, Shao-Zhong PENG. Advances in Synthesis and Application of High-Silica LTA Zeolite[J]. Chinese Journal of Applied Chemistry, 2024, 41(9): 1248-1258.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.240080
Fig.6 CO2 (A) and N2 (B) adsorption isotherms of NaK-ZK-4 with different K+ contents at 273 K: 0% (■), 10% (●), 18% (▲) and 26% (▼)[33]; (C) Regenerability of LTA zeolites with different Si/Al ratios in CO2/CH4 breakthrough experiments; (D) CO2 desorption curves of LTA zeolites: Si/Al ratio of 5 (solid line), Si/Al ratio of 1 (dash line)[34]
Sample | n(Si)/n(Al) | n(Na)/n(Al) | N2 uptake/(mmol·g-1) (100 kPa, 25 ℃) | O2 uptake/(mmol·g-1) (100 kPa, 25 ℃) | O2/N2 selecivity(V(O2)∶V(N2)=21∶79, 25 ℃) |
---|---|---|---|---|---|
NaA | 1.05 | 0.95 | 0.372 | 0.132 | 0.33 |
NaA-H | 1.06 | 0.54 | 0.262 | 0.138 | 0.50 |
ZK-4 | 2.20 | 0.71 | 0.290 | 0.218 | 0.71 |
ZK-4-H | 2.15 | 0.07 | 0.174 | 0.203 | 1.17 |
NaUZM-9 | 2.94 | 0.57 | 0.238 | 0.213 | 0.85 |
NaUZM-9-H | 2.81 | 0.08 | 0.155 | 0.202 | 1.32 |
Table 1 N2 and O2 uptakes and selectivity of LTA and H-LTA with different Si/Al molar ratios[36]
Sample | n(Si)/n(Al) | n(Na)/n(Al) | N2 uptake/(mmol·g-1) (100 kPa, 25 ℃) | O2 uptake/(mmol·g-1) (100 kPa, 25 ℃) | O2/N2 selecivity(V(O2)∶V(N2)=21∶79, 25 ℃) |
---|---|---|---|---|---|
NaA | 1.05 | 0.95 | 0.372 | 0.132 | 0.33 |
NaA-H | 1.06 | 0.54 | 0.262 | 0.138 | 0.50 |
ZK-4 | 2.20 | 0.71 | 0.290 | 0.218 | 0.71 |
ZK-4-H | 2.15 | 0.07 | 0.174 | 0.203 | 1.17 |
NaUZM-9 | 2.94 | 0.57 | 0.238 | 0.213 | 0.85 |
NaUZM-9-H | 2.81 | 0.08 | 0.155 | 0.202 | 1.32 |
Fig.7 (A) Three possible acid sites of LTA zeolite: H-O1, H-O2, H-O3; (B) Comparison between experimental INS spectra and periodic DFT results for H-O1, H-O2 and H-O3[41]
Fig.8 No conversion in NH3-SCR reaction over (A) fresh, (B) 923 K, (C) 1023 K and (D) 1123 K aged zeolite catalysts: Cu-LTA (■), Cu-SSZ-13 (●), Cu-ZSM-5 (▲) and Cu-PST-7 (▼)[32]
1 | 徐如人, 庞文琴, 霍启升, 等. 分子筛与多孔材料化学[M]. 北京: 科学出版社, 2015. |
XU R R, PANG W Q, HUO Q S, et al. Molecular sieves and porous materials chemistry[M]. Beijing: Science Press, 2015. | |
2 | CHEN G, LI J, WANG S, et al. Construction of single-crystalline hierarchical ZSM-5 with open nanoarchitectures via anisotropic-kinetics transformation for the methanol-to-hydrocarbons reaction[J]. Angew Chem Int Ed, 2022, 134(18): e202200677. |
3 | CHEN G, HAN J, NIU Z, et al. Regioselective surface assembly of mesoporous carbon on zeolites creating anisotropic wettability for biphasic interface catalysis[J]. J Am Chem Soc, 2023, 145(16): 9021-9028. |
4 | DUSSELIER M, DAVIS M E. Small-pore zeolites: synthesis and catalysis[J]. Chem Rev, 2018, 118(11): 5265-5329. |
5 | BRECK D W, EVERSOLE W G, MILTON R M, et al. Crystalline zeolites. Ⅰ. the properties of a new synthetic zeolite, type A[J]. J Am Chem Soc, 1956, 78(23): 5963-5972. |
6 | SEFF K. Structural chemistry inside zeolite A[J]. Acc Chem Res, 1976, 9(4): 121-128. |
7 | UZUNOVA E L, ST NIKOLOV G. DFT study of zeolite LTA structural fragments: double four-member rings of oxygen-bridged silicon and aluminum atoms[J]. J Phys Chem A, 2000, 104(22): 5302-5306. |
8 | 徐啟斌, 牛香力, 陈婷婷, 等. 煤气化渣合成4A分子筛及其吸附性能研究[J]. 硅酸盐通报, 2023, 42(6): 2251-2261. |
XU Q B, NIU X L, CHEN T T, et al. Preparation of 4A molecular sieve from coal gasification slag and its adsorption performance[J]. Bull Chin Ceram Soc, 2023, 42(6): 2251-2261. | |
9 | GRANDE C A, RODRIGUES A E. Propane/propylene separation by pressure swing adsorption using zeolite 4A[J]. Ind Eng Chem Res, 2005, 44(23): 8815-8829. |
10 | 孙剑平, 张睿, 王奥乾, 等. 硝酸钠改性5A分子筛对废水中Cr3+吸附效果的影响[J]. 沈阳建筑大学学报(自然科学版), 2023, 39(2): 377-384. |
SUN J P, ZHANG R, WANG A Q, et al. Preparation of calcined 5A zeolite modified with sodium nitrate and its adsorption for Cr3+[J]. J Shenyang Archit Univ (Nat Sci Ed), 2023, 39(2): 377-384. | |
11 | 王洪亮, 张震, 张勇平, 等. 4A分子筛吸脱水特性研究[J]. 矿产综合利用, 2023(3): 161-164, 180. |
WANG H L, ZHANG Z, ZHANG Y P, et al. Characteristic study on water absorption and dehydration of 4A molecular sieve[J]. Multipurp Util Miner Resour, 2023(3): 161-164, 180. | |
12 | TOWNSEND R P. Ion exchange in zeolites: some recent developments in theory and practice[J]. Stud Surf Sci Catal, 1986, 28: 273-282. |
13 | CORMA A, DAVIS M E. Issues in the synthesis of crystalline molecular sieves: towards the crystallization of low framework-density structures[J]. ChemPhysChem, 2004, 5(3): 304-313. |
14 | WEITKAMP J. Zeolites and catalysis[J]. Solid State Ionics, 2000, 131(1/2): 175-188. |
15 | KERR G T. Chemistry of crystalline aluminosilicates.Ⅱ. the synthesis and properties of zeolite ZK-4[J]. Inorg Chem, 1966, 5(9): 1537-1539. |
16 | LEWIS G J, MILLER M A, MOSCOSO J G, et al. Experimental charge density matching approach to zeolite synthesis[J]. Studies Surf Sci Catal, 2004, 154(4): 364-372. |
17 | CORMA A, REY F, RIUS J, et al. Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites[J]. Nature, 2004, 431(7006): 287-290. |
18 | BOAL B W, SCHMIDT J E, DEIMUND M A, et al. Facile synthesis and catalysis of pure-silica and heteroatom LTA[J]. Chem Mater, 2015, 27(22): 7774-7779. |
19 | ITANI L, LIU Y, ZHANG W, et al. Investigation of the physicochemical changes preceding zeolite nucleation in a sodium-rich aluminosilicate gel[J]. J Am Chem Soc, 2009, 131(29): 10127-10139. |
20 | OLEKSIAK M D, RIMER J D. Synthesis of zeolites in the absence of organic structure-directing agents: factors governing crystal selection and polymorphism[J]. Rev Chem Eng, 2014, 30(1): 1-49. |
21 | NAVROTSKY A, TROFYMLUK O, LEVCHENKO A A. Thermochemistry of microporous and mesoporous materials[J]. Chem Rev, 2009, 109(9): 3885-3902. |
22 | CONATO M T, OLEKSIAK M D, MCGRAIL B P, et al. Framework stabilization of Si-rich LTA zeolite prepared in organic-free media[J]. Chem Commun, 2015, 51(2): 269-272. |
23 | KUEHL G H. Preparation of shape selective zeolite alpha as catalyst: US Pat. 4191663[P]. 1980-03-04. |
24 | KODAIRA T, IKEDA T. Characters of the tetramethylammonium ion in ZK-4 zeolites depending on their Si/Al ratios[J]. J Phys Chem C, 2010, 114(30): 12885-12895. |
25 | FAN W, SHIRATO S, GAO F, et al. Phase selection of FAU and LTA zeolites by controlling synthesis parameters[J]. Micropor Mesopor Mat, 2006, 89(1/3): 227-234. |
26 | KIM S H, PARK M B, MIN H K, et al. Zeolite synthesis in the tetraethylammonium-tetramethylammonium mixed-organic additive system[J]. Micropor Mesopor Mat, 2009, 123(1/2/3): 160-168. |
27 | PARK M B, LEE Y, ZHENG A, et al. Formation pathway for LTA zeolite crystals synthesized via a charge density mismatch approach[J]. J Am Chem Soc, 2013, 135(6): 2248-2255. |
28 | BOUIZI Y, PAILLAUD J L, SIMON L, et al. Seeded synthesis of very high silica zeolite A[J]. Chem Mater, 2007, 19(4): 652-654. |
29 | HUANG A, WEIDENTHALER C, CARO J. Facile and reproducible synthesis of ITQ-29 zeolite by using Kryptofix 222 as the structure directing agent[J]. Micropor Mesopor Mater, 2010, 130(1/1/3): 352-356. |
30 | HARBUZARU B, PAILLAUD J L, PATARIN J, et al. IM-11 crystalline solid with structure type LTA, and a process for its preparation: US Pat. 7056490[P]. 2006-06-06. |
31 | BORES C, LUO S, LONERGAN J D, et al. Monte carlo simulations and experiments of all-silica zeolite LTA assembly combining structure directing agents that match cage sizes[J]. PhysChemChemPhys, 2022, 24(1): 142-148. |
32 | JO D, RYU T, PARK G T, et al. Synthesis of high-silica LTA and UFI zeolites and NH3-SCR performance of their copper-exchanged form[J]. ACS Catal, 2016, 6(4): 2443-2447. |
33 | CHEUNG O, BACSIK Z, KROKIDAS P, et al. K+ exchanged zeolite ZK-4 as a highly selective sorbent for CO2[J]. Langmuir, 2014, 30(32): 9682-9690. |
34 | PALOMINO M, CORMA A, REY F, et al. New insights on CO2-methane separation using LTA zeolites with different Si/Al ratios and a first comparison with MOFs[J]. Langmuir, 2010, 26(3): 1910-1917. |
35 | 刘伟强, 王红超, 杨彦强, 等. 烯烃对5A分子筛吸附剂吸附分离性能的影响[J]. 石油炼制与化工, 2023, 54(11): 34-40. |
LIU W Q, WANG H C, YANG Y Q, et al. Effect of olefins on adsorption and separation performance of 5A zeolite adsorbent[J]. Pet Process Petrochem, 2023, 54(11): 34-40. | |
36 | LIU H, YUAN D, LIU G, et al. Oxygen-selective adsorption on high-silica LTA zeolite[J]. Chem Commun, 2020, 56(75): 11130-11133. |
37 | LIU B, KITA H, YOGO K. Preparation of Si-rich LTA zeolite membrane using organic template-free solution for methanol dehydration[J]. Sep Purif Techol, 2020, 239: 116533. |
38 | TISCORMIA I, VALENCIA S, CORMA A, et al. Preparation of ITQ-29 (Al-free zeolite A) membranes[J]. Micropor Mesopor Mat, 2008, 110(2/3): 303-309. |
39 | CASADO-COTERILLO C, SOTO J, JIMARE M T, et al. Preparation and characterization of ITQ-29/polysulfone mixed-matrix membranes for gas separation: effect of zeolite composition and crystal size[J]. Chem Eng Sci, 2012, 73: 116-122. |
40 | KUEHL G H. Shape selective catalyst from zeolite alpha and use thereof. US Pat. 4299686[P]. 1981-11-10. |
41 | LEMISHKO T, VALENCIA S, REY F, et al. Inelastic neutron scattering study on the location of Brønsted acid sites in high silica LTA zeolite[J]. J Phys Chem C, 2016, 120(43): 24904-24909. |
42 | XU H, LU P, FU G, et al. The strong SDA/framework interactions and acidity study of high-silica LTA-type zeolites[J]. Micropor Mesopor Mat, 2023, 360: 112724. |
43 | WANG A, ARORA P, BERNIN D, et al. Investigation of the robust hydrothermal stability of Cu/LTA for NH3-SCR reaction[J]. Appl Catal B-Environ Energy, 2019, 246: 242-253. |
44 | RYU T, AHN N H, SEO S, et al. Fully copper-exchanged high-silica LTA zeolites as unrivaled hydrothermally stable NH3-SCR catalysts[J]. Angew Chem Int Ed, 2017, 129(12): 3304-3308. |
45 | RYU T, KIM H, HONG S B. Nature of active sites in Cu-LTA NH3-SCR catalysts: a comparative study with Cu-SSZ-13[J]. Appl Catal B-Environ Energy, 2019, 245: 513-521. |
[1] | Ying-Wei LI, Ji HAN, Bu-Yuan GUAN. Research Progress on the Synthesis and Application of Two-Dimensional Mesoporous Materials [J]. Chinese Journal of Applied Chemistry, 2024, 41(6): 767-782. |
[2] | Bing-Jie WAN, Xiao-Xue LIU, Lin-Guang QI, Chang-Chao JIA, Jian LIU. Research Progress of TiO2-Based Photocatalytic CO2 Reduction [J]. Chinese Journal of Applied Chemistry, 2024, 41(5): 637-658. |
[3] | Jin-Hui LIANG, Le-Cheng LIANG, Zhi-Ming CUI. Research Progress on Intermetallic Compound Electrocatalysts Applied in the Interconversion Between Hydrogen and Electric Power [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1140-1157. |
[4] | Wei WANG, Jia-Yuan LI. Research Progress of Cobalt Phosphide Heterojunction Catalysts for Electrolytic Hydrogen Evolution Reaction [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1175-1186. |
[5] | Jia-Xin LIU, Jia-He FAN, Shu-Hui LI, Liang MA. Synthesis of Rh@Pt/C Concave Cubic Core-Shell Catalyst and Its Ethanol Electro-Oxidation Performance [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1195-1204. |
[6] | Lian-Cheng HUI, Jian-Xing ZHUANG, Shun XIAO, Mei-Ping LI, Meng-Yuan JIN, Qing LYU. Nickel-Nitrogen-Doped Graphdiyne as an Efficient Catalyst for Oxygen Reduction [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1205-1213. |
[7] | Yi-Cheng ZHANG, Fei ZHA, Xiao-Hua TANG, Yue CHANG, Hai-Feng TIAN, Xiao-Jun GUO. Research Progress of Heterogeneous Catalytic Preparation of Organic Peroxides [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 769-788. |
[8] | Xing-Quan XIONG, Hui ZHANG, Li-Zhu GAO. Progress in Chemical Modification and Application of Lignin [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 806-819. |
[9] | Xue-Bo LEI, Hui-Jing LIU, He-Yu DING, Guo-Dong SHEN, Run-Jun SUN. Research Progress on Photocatalysts for Degradation of Organic Pollutants in Printing and Dyeing Wastewater [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 681-696. |
[10] | Zhen-Bang LIU, Shuo ZHANG, Yu BAO, Ying-Ming MA, Wei-Qi LIANG, Wei WANG, Ying HE, Li NIU. Progress of Application Research on Cheminformatics in Deep Learning [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 360-373. |
[11] | Nan-Yu LIN, Feng GAO, Jiang-Ying QU, Jing-Jing TU, Wei-Jun ZHONG, Yun-Hao ZANG. Preparation of Super-hydrophilic/Underwater Oil-phobic High Silicon Cloth and Its Oil-water Separation Performance [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 449-459. |
[12] | Guo-Qing CAI, Jing-Ru DONG, Jun-Ming MO. Green Synthesis and Antibacterial Activity of N‑Benzyl Sulfoximines [J]. Chinese Journal of Applied Chemistry, 2023, 40(12): 1693-1699. |
[13] | Yu-Xuan PENG, Xiao WANG, Hong-Yan JI, Xue-Ting WU, Shu-Yan SONG, Hong-Jie ZHANG. Enhancing Catalytic Activity of Ru/CeO2 in Terephthalic Acid Hydro-Conversion via Reduction Pre-Treatment of CeO2 Support [J]. Chinese Journal of Applied Chemistry, 2023, 40(11): 1494-1503. |
[14] | Feng WEI, Hai-Dong XING, Zi-Yuan XIU, De-Feng XING, Xiao-Jun HAN. Fabrication of BiOX-Based Photocatalysts and Their Applications in Energy Conversion [J]. Chinese Journal of Applied Chemistry, 2023, 40(11): 1518-1530. |
[15] | Yan-Qin CHENG, Zhuo-Xi LI, You-Di WANG, Juan-Juan XU, Zheng BIAN. Structurally Simplified 4-Hydroxyprolinamide for Highly Efficient Asymmetric Michael Addition of Aldehydes to Nitroolefins [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 146-154. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||