Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (8): 1195-1204.DOI: 10.19894/j.issn.1000-0518.230109
• Full Papers • Previous Articles Next Articles
Jia-Xin LIU, Jia-He FAN, Shu-Hui LI, Liang MA(
)
Received:2023-04-17
Accepted:2023-07-05
Published:2023-08-01
Online:2023-08-24
Contact:
Liang MA
About author:liangma@cug.edu.cnSupported by:CLC Number:
Jia-Xin LIU, Jia-He FAN, Shu-Hui LI, Liang MA. Synthesis of Rh@Pt/C Concave Cubic Core-Shell Catalyst and Its Ethanol Electro-Oxidation Performance[J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1195-1204.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.230109
Fig.2 Rh@Pt0.25 concave cubic core-shell nanocrystals (A) TEM image in a wide range; (B) High-resolution TEM image; (C) TEM EDS mappings of Rh and Pt; (D) TEM EDS line scan of Rh and Pt
| Sample | BE(Rh3d5/2)/eV | BE(Pt4f7/2)/eV | Rh3+/Rh0 | Pt2+/Pt0 |
|---|---|---|---|---|
| Standard | 307.90 | 71.30 | 2.12 | / |
| Rh@Pt0.2/C | 307.43 | 71.41 | 0.84 | 0.57 |
| Rh@Pt0.25/C | 307.46 | 71.51 | 0.48 | 0.64 |
| Rh@Pt0.33/C | 307.55 | 71.53 | 0.43 | 0.60 |
| Rh@Pt0.5/C | 307.62 | 71.55 | 0.87 | 0.60 |
Table 1 XPS of different Rh@Pt/C core-shell nanocrystals catalyst
| Sample | BE(Rh3d5/2)/eV | BE(Pt4f7/2)/eV | Rh3+/Rh0 | Pt2+/Pt0 |
|---|---|---|---|---|
| Standard | 307.90 | 71.30 | 2.12 | / |
| Rh@Pt0.2/C | 307.43 | 71.41 | 0.84 | 0.57 |
| Rh@Pt0.25/C | 307.46 | 71.51 | 0.48 | 0.64 |
| Rh@Pt0.33/C | 307.55 | 71.53 | 0.43 | 0.60 |
| Rh@Pt0.5/C | 307.62 | 71.55 | 0.87 | 0.60 |
Fig.7 CV curves of (A) metal quality normalization and (B) area normalization for different catalysts; (C) Activity trend of different catalysts quality normalization and area normalization; (D) CA curves of different catalysts
| 1 | XIAO F, WANG Y C, WU Z P, et al. Recent advances in electrocatalysts for proton exchange membrane fuel cells and alkaline membrane fuel cells[J]. Adv Mater, 2021, 33(50): 2006292. |
| 2 | AN L, ZHAO T S, LI Y S. Carbon-neutral sustainable energy technology: direct ethanol fuel cells[J]. Renew Sustainable Energ Rev, 2015, 50: 1462-1468. |
| 3 | LAMY C, LIMA A, LERHUN V, et al. Recent advances in the development of direct alcohol fuel cells (DAFC)[J]. J Power Sources, 2002, 105: 283-296. |
| 4 | CHU Y H, SHUL Y G. Alcohol crossover behavior in direct alcohol fuel cells (DAFCs) system[J]. Fuel Cells, 2012, 12(1): 109-115. |
| 5 | VARCOE J R, SLADE R C T, YEE E L H, et al. Poly(ethylene-co-tetrafluoroethylene)-derived radiation-grafted anion-exchange membrane with proper-ties specifically tailored for application in metal-cation-free alkaline polymer electrolyte fuel cells[J]. J Power Sources, 2007, 173(1): 194-199. |
| 6 | LIANG Z X, ZHAO T S, XU J B, et al. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media[J]. Electrochim Acta, 2009, 54(8): 2203-2208. |
| 7 | TRIPKOVIĆ A V, POPOVIĆ K D, LOVIĆ J D. The influence of the oxygen-containing species on the electrooxidation of the C1-C4 alcohols at some platinum single crystal surfaces in alkaline solution[J]. Electrochim Acta, 2001, 46(20): 3163-3173. |
| 8 | HITMI H, BELGSIR E, LÉGER J M, et al. A kinetic analysis of the electro-oxidation of ethanol at a platinum electrode in acid medium[J]. Electrochim Acta, 1994, 39(3): 407-415. |
| 9 | SHEN S Y, ZHAO T S, WU Q X. Product analysis of the ethanol oxidation reaction on palladium-based catalysts in an anion-exchange membrane fuel cell environment[J]. Int J Hydrogen Energy, 2012, 37(1): 575-582. |
| 10 | MA L, CHU D, CHEN R. Comparison of ethanol electro-oxidation on Pt/C and Pd/C catalysts in alkaline media[J]. Int J Hydrogen Energy, 2012, 37(15): 11185-11194. |
| 11 | ZHOU Z Y, WANG Q A, LIN J L, et al. In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media[J]. Electrochim Acta, 2010, 55(27): 7995-7999. |
| 12 | TACCONI N, LEZNA R O, BEDEN B, et al. In-situ FTIR study of the electrocatalytic oxidation of ethanol at iridium and rhodium electrodes[J]. J Electroanal Chem, 1994, 379(1/2): 329-337. |
| 13 | LIMA F, GONZALEZ E R. Ethanol electro-oxidation on carbon-supported Pt-Ru Pt-Rh and Pt-Ru-Rh nanoparticles[J]. Electrochim Acta, 2008, 53(6): 2963-2971. |
| 14 | ZHU C, LAN B, WEI R L, et al. Potential-dependent selectivity of ethanol complete oxidation on Rh electrode in alkaline media: a synergistic study of electrochemical ATR-SEIRAS and IRAS[J]. ACS Catal, 2019, 9(5): 4046-4053. |
| 15 | ZHANG F F, ZHOU D B, ZHANG Z J, et al. Preparation of Rh/C and its high electro-catalytic activity for ethanol oxidation in alkaline media[J]. RSC Adv, 2015, 5(111): 91829-91835. |
| 16 | ZHAO M, CHEN Z, SHI Y, et al. Kinetically controlled synthesis of rhodium nanocrystals with different shapes and a comparison study of their thermal and catalytic properties[J]. J Am Chem Soc, 2021, 143(16): 6293-6302. |
| 17 | COLMATI F, TREMILIOSI F G, GONZALEZ E R, et al. Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes[J]. Faraday Discuss, 2009, 140: 379-397. |
| 18 | STEVANOVIC S, TRIPKOVIC D, ROGAN J, et al. Microwave assisted polyol synthesis of carbon-supported platinum-based bimetallic catalysts for ethanol oxidation[J]. J Solid State Electr, 2012, 16: 3147-3157. |
| 19 | CHE M. Nobel Prize in chemistry 1912 to sabatier: organic chemistry or catalysis?[J]. Catal Today, 2013, 218: 162-171. |
| 20 | BAI J, XIAO X, XUE Y Y, et al. Bimetallic platinum-rhodium alloy nanodendrites as highly active electrocatalyst for the ethanol oxidation reaction[J]. ACS Appl Mater Interfaces, 2018, 10(23): 19755-19763. |
| 21 | XIAO W, LI S, LIU J, et al. Lead as an effective facilitator for ethanol electrooxidation on Rh catalyst in alkaline media: RhPb/C vs RhRu/C[J]. J Electroanal Chem, 2023, 936: 117386. |
| 22 | LAN B, HUANG M, WEI R L, et al. Ethanol electrooxidation on rhodium-lead catalysts in alkaline media: high mass activity, long-term durability, and considerable CO2 selectivity[J]. Small, 2020, 16(40): 2004380. |
| 23 | LI H Q, YE J Y, LI X M, et al. Excavated RhNi alloy nanobranches enable superior CO-tolerance and CO2 selectivity at low potentials toward ethanol electro-oxidation[J]. J Mater Chem A, 2019, 7(46): 26266-26271. |
| 24 | LI M, KOWAL A, SASAKI K, et al. Ethanol oxidation on the ternary PtRhSnO2/C electrocatalysts with varied Pt∶Rh∶Sn ratios[J]. Electrochim Acta, 2010, 55(14): 4331-4338. |
| 25 | LIU Y, LAN B, YANG, Y Y. Boosting ethanol electrooxidation at RhBi alloy and Bi2O3 composite surfaces in alkaline media[J]. J Mater Chem A, 2022, 10(39): 20946-20952. |
| 26 | SOUZA J D, QUEIROZ S L, BERGAMASKI K, et al. Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes. a study using DEMS and in-situ FTIR techniques[J]. J Phys Chem B, 2002, 106(38): 9825-9830. |
| 27 | SEN G S, DATTA J. A comparative study on ethanol oxidation behavior at Pt and PtRh electrodeposits[J]. J Electroanal Chem, 2006, 594(1): 65-72. |
| 28 | LIU K, WANG W, GUO P, et al. Replicating the defect structures on ultrathin Rh nanowires with Pt to achieve superior electrocatalytic activity toward ethanol oxidation[J]. Adv Funct Mater, 2019, 29(2): 1806300. |
| 29 | ZHANG H, LI W Y, JIN M S, et al. Controlling the morphology of rhodium nanocrystals by manipulating the growth kinetics with a syringe pump[J]. Nano Lett, 2011, 11(2): 898-903. |
| 30 | ZHANG Y, JANYASUPAB M, LIU C W, et al. Three-dimensional Pt Rh alloy porous nanostructures: tuning the atomic composition and controlling the morphology for the application of direct methanol fuel cells[J]. Adv Funct Mater, 2012, 22(17): 3570-3575. |
| 31 | MUTHUKUMAR V, CHETTY R. Impregnated electroreduced Pt on Ru/C as an anode catalyst for direct methanol fuel cells[J]. J Electrochem Soc, 2019, 166(15): F1173-F1179. |
| 32 | LI M, WANG Y, CAI J, et al. Surface sites assembled-strategy on Pt-Ru nanowires for accelerated methanol oxidation[J]. Dalton Trans, 2020, 49(40): 13999-14008. |
| 33 | CANTANE D A, LIMA F H B. Electrocatalytic activity of Pd, Pt, and Rh for the electro-oxidation of ethanol in alkaline electrolyte: an online DEMS study[J]. Electrocatalysis, 2012, 3(3/4): 324-333. |
| 34 | LU Y, WANG W, CHEN X, et al. Composition optimized teimetallic PtNiRu dendritic nanostructures as versatile and active electrocatalysts for alcohol oxidation[J]. Nano Res, 2019, 12: 651-657. |
| [1] | Jin-Hui LIANG, Le-Cheng LIANG, Zhi-Ming CUI. Research Progress on Intermetallic Compound Electrocatalysts Applied in the Interconversion Between Hydrogen and Electric Power [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1140-1157. |
| [2] | Wei WANG, Jia-Yuan LI. Research Progress of Cobalt Phosphide Heterojunction Catalysts for Electrolytic Hydrogen Evolution Reaction [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1175-1186. |
| [3] | Lian-Cheng HUI, Jian-Xing ZHUANG, Shun XIAO, Mei-Ping LI, Meng-Yuan JIN, Qing LYU. Nickel-Nitrogen-Doped Graphdiyne as an Efficient Catalyst for Oxygen Reduction [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1205-1213. |
| [4] | Chao ZHANG. Research Prospect of Single Atom Catalysts Towards Electrocatalytic Reduction of Carbon Dioxide [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 871-887. |
| [5] | Yan WANG, Shu-Cong ZHANG, Xing-Kun WANG, Zhi-Cheng LIU, Huan-Lei WANG, Ming-Hua HUANG. Research Progress on Transition Metal⁃Based Catalysts for Hydrogen Evolution Reaction via Seawater Electrolysis [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 927-940. |
| [6] | Lin-Jie SHANG, Jiang LIU, Ya-Qian LAN. Covalent Organic Framework Materials for Photo/ Electrocatalytic Carbon Dioxide Reduction [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 559-584. |
| [7] | Li-Zhi SUN, Hao LYU, Xiao-Wen MIN, Ben LIU. Mesoporous Palladium⁃Boron Alloy Nanocatalysts: Synthesis and Performance in Methanol Oxidation Electrocatalysis [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 673-684. |
| [8] | BI Yipiao, GONG Xue, YANG Fa, RUAN Mingbo, SONG Ping, XU Weilin. Polyvalent MnOx/C Electrocatalyst for Highly Efficient Nitrogen Reduction Reaction [J]. Chinese Journal of Applied Chemistry, 2020, 37(9): 1048-1055. |
| [9] | MENG Yang, YANG Chan, PENG Juan. Progress in Iron, Cobalt and Nickel-Based Metal Phosphide Nano-catalysts for Hydrogen Production under Alkaline Conditions [J]. Chinese Journal of Applied Chemistry, 2020, 37(7): 733-745. |
| [10] | CHEN Jiaqi, ZHOU Yan, SUN Jingwen, ZHU Junwu, WANG Xin, FU Yongsheng. Recent Progress of Metal Organic Frameworks-Based Hollow Materials [J]. Chinese Journal of Applied Chemistry, 2020, 37(11): 1221-1235. |
| [11] | CHE Tinghua, TAN Xiao, YAN Jiawei, SONG Fengdan, ZHANG Hongmei, QI Suitao. Synthesis of Copper Modified Porous Nickel Self-supported Electrode and Its Catalytic Oxidation of Glucose [J]. Chinese Journal of Applied Chemistry, 2019, 36(9): 1091-1098. |
| [12] | LI Xinjie,XU He,YU Mei,ZHANG Chao,GUO Anru,LIU Chang. Nitrogen-Doped Graphitic Carbon Coated Cobalt Nanocatalysts for Highly Efficient and Durable Hydrogen Evolution Reaction [J]. Chinese Journal of Applied Chemistry, 2019, 36(5): 571-577. |
| [13] | LI Xinjie, XU He, YU Mei, ZHANG Chao, GUO Anru, LIU Chang. Nitrogen-Doped Graphitic Carbon Coated Cobalt Nanocatalysts for Highly Efficient and Durable Hydrogen Evolution Reaction [J]. Chinese Journal of Applied Chemistry, 2019, 36(5): 0-0. |
| [14] | LONG Xia,WANG Yaqiong,JU Min,WANG Zheng,YANG Shihe. Elaboration and Application of Transition Metals Based Layered Double Hydroxides for Electrochemical Water Oxidation [J]. Chinese Journal of Applied Chemistry, 2018, 35(8): 881-889. |
| [15] | CHEN Si,SUN Lizhen,SHU Xinxin,ZHANG Jintao. Graphene-based Catalysts for Efficient Electrocatalytic Applications [J]. Chinese Journal of Applied Chemistry, 2018, 35(3): 272-285. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||