Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (8): 1294-1302.DOI: 10.19894/j.issn.1000-0518.210465
• Full Papers • Previous Articles Next Articles
Lian-Bo TANG1, Da-You FU1, Qi CHEN2, Yang-Run FENG2, Ya-Lin XIONG1, Zhu-Qing WANG1()
Received:
2021-09-15
Accepted:
2022-01-11
Published:
2022-08-01
Online:
2022-08-04
Contact:
Zhu-Qing WANG
About author:
wangzq128@163.comSupported by:
CLC Number:
Lian-Bo TANG, Da-You FU, Qi CHEN, Yang-Run FENG, Ya-Lin XIONG, Zhu-Qing WANG. Enhanced Gas⁃Liquid Chemiluminescence by Carbon Dots for Determination of Carbon Dioxide[J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1294-1302.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210465
Fig.1 Schematic diagram of detecting CO2A. The structure of the GL-CL reactor with a top liquid inlet,a bottom liquid outlet,a left gas inlet and a right gas outlet. The white part is a hydrophilic fiber-string. B. The schematic diagram of the detection flow system. M1 and M2 are Laminar flow gas quality controllers,PMT is a photomultiplier
Fig.4 The fluorescence spectra for CDs excited at the wavelength range of 310~370 nmThe inset on the top left corner is a picture of CDs that are radiated by normal light and ultraviolet light
Fig.6 The effect of the concentration of KOH on the CL intensity in the range of 0.20~1.0 mol/Lc(H2O2)=0.15 mol/L, negative high voltage: 600 V;ρ(CO2)/(mg·L-1): a.0; b.3.920; c.7.840; d.11.76
Fig.7 The effect of the concentration of H2O2 on the CL intensity in the range of 0.05~0.7 mol/Lc(KOH)=0.40 mol/L, negative high voltage: 600 V; ρ(CO2)/(mg·L-1): a.0; b.3.920; c.7.840; d.11.76
Fig.8 The CL intensities are recorded under different volume ratios of CDs to KOH in the range of 0∶1~1∶1c(H2O2)=0.15 mol/L,c(KOH)=0.40 mol/L,negative high voltage:600 V; ρ(CO2)/(mg·L-1): a.0; b.3.920; c.7.840; d.11.76
Fig.9 The effect of difference of the mixed gas on the CL intensityc(H2O2)=0.15 mol/L,c(KOH)=0.40 mol/L,V(CDs)∶V(KOH)=1∶2,negative high voltage: 600 V; ρ(CO2)=11.76 mg/L
Fig.10 The effect of different mixed gas on the CL intensityc(H2O2)=0.15 mol/L,c(KOH)=0.40 mol/L,V(CDs)∶V(KOH)=1∶2,negative high voltage:600 V.ρ(CO2)=11.76 mg/L,ρ(SO2)=28.60 μg/L, ρ(NO2)=20.50 μg/L, ρ(NO)= ρ(CH2O)=13.40 μg/L
Fig.11 The linear relation between the mass concentration of CO2 and the CL intensityc(H2O2)=0.15 mol/L,c(KOH)=0.40 mol/L,V(CDs)∶V(KOH)=1∶2, ρ(CO2)=0.196~49.0 mg/L,negative high voltage:900 V
Fig.12 The CL intensity of detecting 1.96 mg/L CO2 (A) and 4.56 mg/L CO2 (B) respectively,each repeating 11 timesA.ρ(CO2)=1.96 mg/L;B.ρ(CO2)=4.56 mg/L,negative high voltage:900 V;c(H2O2)=0.15 mol/L,c(KOH)=0.40 mol/L,V(CDs)∶V(KOH)=1∶2
Fig.13 The change of mass concentration of CO2 at the same place in the range of 8:00~21:00c(H2O2)=0.15 mol/L; c(KOH)=0.40 mol/L; V(CDs)∶V(KOH)=1∶2; negative high voltage:900 V
1 | SYED N A S, LIN J M. Recent advances in chemiluminescence based on carbonaceous dots[J]. Colloid Interface Sci, 2017, 241:24-36. |
2 | SHEN C L, LOU Q, LIU K K, et al. Chemiluminescent carbon dots: synthesis, properties, and applications[J]. Nano Today, 2020, 35: 1126-1178. |
3 | ZHANG D K, ZHENG Y Z, DOU X N, et al. Heterogeneous chemiluminescence from gas-solid phase interactions of ozone with alcohols, phenols, and saccharides[J]. Langmuir, 2017, 33(15): 3666-3671. |
4 | HITOSI K, DAISUKE Y, TAKAHIRO F, et al. A novel luminol chemiluminescence induced by photoexcited ketones: a selective determination method for acetone in wastewater[J]. Talanta, 2021, 3: 798-803. |
5 | SHEN C L, LOU Q, ZHANG G S, et al. Trigonal nitrogen activates high-brightness chemiluminescent carbon nanodots[J]. ACS Mater Lett, 2021, 36: 826-837. |
6 | MUHANMAD S, LOU B H, MOHAMED I H, et al. Chemiluminescence of lucigenin-allantoin and its application for the detection of allantoin[J].Anal Chem, 2017, 89(3): 1863-1869. |
7 | 李佳祁, 付大友, 王竹青, 等. 基于气液相化学发光技术的臭氧在线检测方法[J]. 应用化学, 2020, 37(1): 96-102. |
LI J Q, FU D Y, WANG Z Q, et al. Online ozone detection method based on gas-liquid chemiluminescence technology[J]. Chinese J Appl Chem, 2020, 37(1): 96-102. | |
8 | 齐斌, 王竹青, 杨红艳, 等. 在线二氧化氮化学发光测定仪的研制[J]. 分析化学, 2010, 38(4): 607-610. |
QI B, WANG Z Q, YANG H Y, et al. On-line chemiluminescence instrument for measurement of nitrogen dioxide[J]. Chinese J Anal Chem, 2010, 38(4): 607-610. | |
9 | LIU C, ZHANG P, TIAN F, et al. One-step synthesis of surface passivated carbon nanodots by microwave assisted pyrolysis for enhanced multicolor photoluminescence and bioimaging[J]. J Mater Chem, 2011, 21: 13163-13167. |
10 | WANG F, PANG S, WANG L, et al. One-step synthesis of highly luminescent carbon dots in noncoordinating solvents[J]. Chem Mater, 2012, 48: 8835-8837. |
11 | XUE W, LIN Z, CHEN H, et al. Enhancement of ultraweak chemiluminescence from reaction of hydrogen peroxide and bisulfite by water-soluble carbon nanodots[J]. J Phys Chem C, 2011, 115: 21707-21714. |
12 | LIN Z, XUE W, CHEN H, et al. Peroxynitrous-acid-induced chemiluminescence of fluorescent carbon dots for nitrite sensing[J]. Anal Chem, 2011, 83: 8245-8251. |
13 | MOLAEI M J. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence[J]. Talanta, 2018, 42(12): 19390-19494. |
14 | JANITA P C, LIU X, CHOW C, et al. Diagnostic accuracy of end-tidal carbon dioxide detection in determining correct placement of nasogastric tube: an updated systematic review with meta-analysis[J]. Nurs Stud, 2021, 123: 8746-8752. |
15 | ADIBAH I D, WAN M K, KHAIRUL A W. Exploitation on the organic semiconductors nitro ethynylated-thiourea molecular framework as efficient sensing materials in the detection of carbon dioxide (CO2) by electron donating groups (EDGs) alteration[J]. J Environ Chem Eng, 2021, 9(5): 106-112. |
16 | LI X, TANG B, WU B, et al. Highly sensitive diffraction grating of hydrogels as sensors for carbon dioxide detection[J]. Ind Eng Chem Res, 2021, 60(12): 4639-4649. |
17 | CHEN S Y, YU H, ZHAO C, et al. Indolo[3,2-b]carbazole derivative as a fluorescent probe for fluoride ion and carbon dioxide detections[J]. Sens Actuators B, 2017, 250: 591-600. |
18 | ZHU J L, JIA P P, TAN S Y, et al. Small-molecule fluorescent probes for the detection of carbon dioxide[J]. Chinese Chem Lett, 2018, 29(10): 1445-1450. |
19 | 王竹青, 付大友, 袁东, 等. 一种二氧化碳气体检测装置及检测方法: CN,110006876A[P]. 2019. |
WANG Z Q, FU D Y, YUAN D, et al. The invention discloses a carbon dioxide gas detecting device and detecting method: CN,110006876A[P]. 2019. | |
20 | TOOBA H, MOHAMMAD A, JAMSHID L, et al. Chemiluminescence reaction of glucose-derived graphene quantum dots with hypochlorite, and its application to the determination of free chlorine[J]. Microchim Acta, 2015, 182(3/4): 789-796. |
21 | MOHAMMAD A, JAMSHID L, TOOBA H. A novel chemiluminescence method for determination of bisphenol A based on the carbon dot-enhanced HCO3 --H2O2 system[J]. J Lumin, 2014, 158: 160-164. |
[1] | Feng ZHU, Xiao-Lian PENG, Wen-Bin ZHANG. Research Progress in the Effects of Proton Acceptor/Donor on Electrocatalytic Reactions [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 666-680. |
[2] | Yue-Xia ZHANG, Xiao-Peng FAN, Yu-Juan CAO, Xin-Tong YANG, Zhong-Ping LI, Zhen-Hua YANG, Chuan DONG. Synthesis of Oil-soluble Carbon Quantum Dots by Pyrolysis Method for the Detection of Oxytetracycline [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 509-517. |
[3] | Rui-Zhe WANG, Guang-Qi HU, Wei-Hao YE, Chao-Fan HU, Jian-Le ZHUANG, Bing-Fu LEI, Wei LI, Ying-Liang LIU. Hydrothermal Preparation and Application of Oil-soluble Carbon Dots with High Ultraviolet-short-wave Blue Light Shielding [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 59-68. |
[4] | Zhen-Hua YANG, Xuan-Sen SUN, Yue-Xia ZHANG, Yu-Juan CAO, Qi-Qi ZHANG, Qiao-Zhi GUO, Xiao-Peng FAN, Zhong-Ping LI, Chuan DONG. Preparation of Nitrogen Sulfur Co⁃doped Carbon Dots with Nitrogen Sulfur and the Application for Detection of Oxytetracycline in Milk [J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1382-1390. |
[5] | Zhi-Qiang QIAO, De-Qiang JI, Peng WANG, Ying-Ming HE, Zhi-Da LI, De-Bin JI, Hong-Jun WU. Progress in Preparation of Carbon Materials by Electrochemical Reduction of Carbon Dioxide in Molten Salt [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1026-1038. |
[6] | Xiao-Mei WANG, Jiang-Fei GUO, Li-Zhi WANG, Jian-Han HUANG. Porphyrin⁃Based Hyper⁃cross⁃Linked Polymer: Preparation and Adsorption of Carbon Dioxide and Hg(Ⅱ) Ion [J]. Chinese Journal of Applied Chemistry, 2022, 39(7): 1083-1089. |
[7] | Hai-Yan QI, Chen-Qi ZHANG, Jin-Long LI, Jun LI. Synthesis of Sulfur and Nitrogen Doped Carbon Dots for Cu(Ⅱ) Detection [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 980-989. |
[8] | Lin-Jie SHANG, Jiang LIU, Ya-Qian LAN. Covalent Organic Framework Materials for Photo/ Electrocatalytic Carbon Dioxide Reduction [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 559-584. |
[9] | Xue-Ting WU, Yang YU, Shu-Yan SONG, Hong-Jie ZHANG. Artificial Carbon Sequestration Technology—Research Progress on the Catalysts for Thermal Catalytic Reduction of CO2 [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 599-615. |
[10] | Ao YU, Guo-Ming MA, Long-Tao ZHU, Ping PENG, Fang-Fang LI. Electrochemical Reduction of Carbon Dioxide to Carbon Materials for Two⁃Electron Oxygen Reduction Reaction [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 657-665. |
[11] | Jin-Ping SONG, Qi MA, Xiao-Min LIANG, Jian-Peng SHANG, Chuan DONG. Neodymium and Nitrogen Co‑doped Carbon Dots with High Fluorescence Quantum Yield for Detection of Sulfasalazine and Hela Cell Imaging [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1726-1734. |
[12] | Dan MENG, Kai-Yuan ZHENG, Shan-Shan CHEN, Zhao-Long ZHUO, Li-Li WANG. Preparation and Luminescence Properties of Silicon and Nitrogen Co⁃doped Carbon Dots Phosphors [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1766-1773. |
[13] | Xiang-Zhi YE, Yun-Shui DENG, Yuan LIU, Yong-Liu ZHOU, Jian-Xiong HE, Chun-Rong XIONG. Glass Sphere Supported Amorphous Organotitanium Polymer to Improve the Turnover Frequency in Photocatalytic Reduction of CO2 [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1554-1563. |
[14] | LU Xin-Yu, MA Bin-Ze, LUO Hao, QI Huan, LI Qiang, WU Guang-Peng. Optimization of Development Process for Carbon Dioxide-Based Poly(cyclohexene carbonate) Electron Beam Resist [J]. Chinese Journal of Applied Chemistry, 2021, 38(9): 0-0. |
[15] | LU Xin-Yu, MA Bin-Ze, LUO Hao, QI Huan, LI Qiang, WU Guang-Peng. Optimization of Development Process for Carbon Dioxide-Based Poly(cyclohexene carbonate) Electron Beam Resist [J]. Chinese Journal of Applied Chemistry, 2021, 38(9): 1189-1198. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||