
Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (6): 900-911.DOI: 10.19894/j.issn.1000-0518.210183
• Review • Previous Articles Next Articles
Mei-Lun ZHANG, Hong-Ran LING, Zai-Chun SUN, Bing-Chu MEI, Wei-Wei LI()
Received:
2021-04-12
Accepted:
2021-08-30
Published:
2022-06-01
Online:
2022-06-27
Contact:
Wei-Wei LI
About author:
leeww0229@163.comSupported by:
CLC Number:
Mei-Lun ZHANG, Hong-Ran LING, Zai-Chun SUN, Bing-Chu MEI, Wei-Wei LI. Research Progress on the Preparation Methods of BaMgF4 Powders[J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 900-911.
Fig.1 (a) Unit cell representation of the crystal structure of BaMgF4, 3-dimensional crystal structure of BaMgF4, (b) representing MgF6 octahedral zigzag chains along a-axis and (c)trapped Ba ions in between the void of two parallel MgF6 octahedral zigzag chains along c-axis[5]
方法 Methods | 优点 Advantages | 缺点 Disadvantages | 应用前景 Application prospects |
---|---|---|---|
高温固相法 High temperature solid state method | 工艺成本低、产量大、过程简单 Low process cost, high output, simple procdure | 粉体粒径偏大,还会残留BaF2和MgF2等杂质 Large particle size, and remaining impurities such as BaF2 and MgF2 | - |
机械球磨法 Mechanical milling method | 能够制备非平衡材料,效率高 Ability to prepare non?equilibrium materials, high efficiency | 产物整体的结晶度较低,容易引入金属杂质 Low overall crystallinity, and remaining metal impurities | - |
水热法 Hydrothermal method | 产品物相均匀,纯度高,结晶良好, 反应条件可控 Homogeneous phase, high purity, good crystallization, and controllable reaction conditions | 操作方法复杂,实验条件要求高,颗粒易长大 Complicated operation method, high experimental conditions, and the particles are easy to grow up | |
溶剂热法 Solvothermal method | 利用有机溶剂可以有效控制颗粒的 尺寸和团聚程度 The organic solvents can be used to effectively control the size and degree of agglomeration of particles | 颗粒粒径不均匀,很难彻底除去产物中 残留的有机溶剂 Non?uniform particle size, and it is difficult to remove the residual organic solvent completely | - |
溶胶?凝胶法 Sol?gel method | 工艺流程简单,粉体粒度均匀 Simple preparation process flow, uniform grain size | 反应所需时间较长,原料为金属有机物时难以除净 Long reaction time, and it is difficult to remove the metal organic materials completely. | 可用来制备薄膜等 功能性材料 Preparing functional materials such as films |
反相微乳液法 Reversed?phase microemulsion method | 可控制合成颗粒的大小,产物粒度 分布窄,有利于连续工业化生产 Controllable particle size, narrow size distribution, and continuous industrial production | 成本高,易引入其它杂质元素 High process cost, other impurity elements can be introduced easily | 可用于光学聚合物 薄膜的开发 Development of optical polymer films |
共沉淀法 Coprecipitation method | 纯度高,杂质少,工艺流程简单, 成本低 High purity, less impurities, simple process flow and low process cost | 颗粒容易生长或聚集,导致粉体整体粒径 偏大或发生严重的团聚 The particles are easy to grow up or agglomerate, causing the overall particle size to be too large or generating serious agglomeration | - |
Table 1 Characteristics and application prospects of preparation methods of BaMgF4 powders
方法 Methods | 优点 Advantages | 缺点 Disadvantages | 应用前景 Application prospects |
---|---|---|---|
高温固相法 High temperature solid state method | 工艺成本低、产量大、过程简单 Low process cost, high output, simple procdure | 粉体粒径偏大,还会残留BaF2和MgF2等杂质 Large particle size, and remaining impurities such as BaF2 and MgF2 | - |
机械球磨法 Mechanical milling method | 能够制备非平衡材料,效率高 Ability to prepare non?equilibrium materials, high efficiency | 产物整体的结晶度较低,容易引入金属杂质 Low overall crystallinity, and remaining metal impurities | - |
水热法 Hydrothermal method | 产品物相均匀,纯度高,结晶良好, 反应条件可控 Homogeneous phase, high purity, good crystallization, and controllable reaction conditions | 操作方法复杂,实验条件要求高,颗粒易长大 Complicated operation method, high experimental conditions, and the particles are easy to grow up | |
溶剂热法 Solvothermal method | 利用有机溶剂可以有效控制颗粒的 尺寸和团聚程度 The organic solvents can be used to effectively control the size and degree of agglomeration of particles | 颗粒粒径不均匀,很难彻底除去产物中 残留的有机溶剂 Non?uniform particle size, and it is difficult to remove the residual organic solvent completely | - |
溶胶?凝胶法 Sol?gel method | 工艺流程简单,粉体粒度均匀 Simple preparation process flow, uniform grain size | 反应所需时间较长,原料为金属有机物时难以除净 Long reaction time, and it is difficult to remove the metal organic materials completely. | 可用来制备薄膜等 功能性材料 Preparing functional materials such as films |
反相微乳液法 Reversed?phase microemulsion method | 可控制合成颗粒的大小,产物粒度 分布窄,有利于连续工业化生产 Controllable particle size, narrow size distribution, and continuous industrial production | 成本高,易引入其它杂质元素 High process cost, other impurity elements can be introduced easily | 可用于光学聚合物 薄膜的开发 Development of optical polymer films |
共沉淀法 Coprecipitation method | 纯度高,杂质少,工艺流程简单, 成本低 High purity, less impurities, simple process flow and low process cost | 颗粒容易生长或聚集,导致粉体整体粒径 偏大或发生严重的团聚 The particles are easy to grow up or agglomerate, causing the overall particle size to be too large or generating serious agglomeration | - |
1 | EIBSCHUTZ M, GUGGENHEIM H J. Antiferromagnetic-piezoelectric crystals: BaMF4 (M=Mn,Fe,Co and Ni)[J]. Solid State Commun, 1968, 6(10): 737-739. |
2 | EIBSCHUTZ M, GUGGENHEIM H J, WEMPLE S H, et al. Ferroelectricity in BaMF4[J]. Phys Lett A, 1969, 29(7): 409-410. |
3 | 吴昊滢. BaMgF4材料的制备及其倍频研究[D]. 上海: 上海交通大学, 2019. |
WU H Y. Research of synthesis and second harmonic generation of BaMgF4[D]. Shanghai: Shanghai Jiao Tong University, 2019. | |
4 | KORE B P, KUMAR A, ERASMUS L, et al. Energy transfer mechanisms and optical thermometry of BaMgF4∶Yb3+,Er3+ phosphor[J]. Inorg Chem, 2018, 57(1): 288-299. |
5 | KORE B P, TAMBOLI S, DHOBLE N S, et al. Efficient resonance energy transfer study from Ce3+ to Tb3+ in BaMgF4[J]. Mater Chem Phys, 2017, 187: 233-244. |
6 | 盛天琦. 基于能量传递的稀土掺杂微纳米发光材料的制备及其发光特性研究[D]. 长春:吉林大学物理学院, 2013. |
SHENG T Q. Researches on synthesis and luminescence of rare earth ions doped micro/nano luminescent materials based on energy transfer[D]. Changchun: Jilin University, 2013. | |
7 | 刘行仁, 石士考, 吴渊. BaMgF4中Gd3+的光谱以及Gd3+和Tb3+离子之间的能量传递[J]. 发光学报, 1990, 11(4): 277-285. |
LIU X R, SHI S K, WU Y. Spectra of Gd3+ ion and energy transfer between Gd3+ and Tb3+ ions in barium magnesium fluorides[J]. Chinese J Lumin, 1990, 11(4): 277-285. | |
8 | QUILTY J W, EDGAR A, SCHIERNING G. Photostimulated luminescence and thermoluminescence in europium-doped barium magnesium fluoride[J]. Curr Appl Phys, 2008, 8(3/4): 420-424. |
9 | 刘银, 王静, 张明旭, 等. 机械球磨法制备纳米材料的研究进展[J]. 材料导报, 2003, 17(7): 20-22, 29. |
LIU Y, WANG J, ZHANG M X, et al. Research and development of mechanical attrition method in nanostructural materials[J]. Mater Rep, 2003, 17(7): 20-22, 29. | |
10 | PREISHUBER-PFLUGL F, WILKENING M. Evidence of low dimensional ion transport in mech-anosynthesized nanocrystalline BaMgF4[J]. Dalton Trans, 2014, 43(26): 9901-9908. |
11 | SCHOLZ G, BREITFELD S, KRAHL T, et al. Mechanochemical synthesis of MgF2-MF2 composite systems (M=Ca,Sr,Ba)[J]. Solid State Sci, 2015, 50: 32-41. |
12 | DARR J A, ZHANG J Y, MAKWANA N M, et al. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions[J]. Chem Rev, 2017, 117(17): 11125-11238. |
13 | 黄丰, 郑伟, 王梦晔, 等. 氧化锌单晶生长、载流子调控与应用研究进展[J]. 人工晶体学报, 2021, 50(2): 209-243. |
HUANG F, ZHENG W, WANG M Y, et al. Development of zinc oxide: bulk crystal growth, arbitrary regulation of carrier concentration and practical applications[J]. J Synth Cryst, 2021, 50(2): 209-243. | |
14 | KIM S W, CHANG H Y, HALASYAMANI P S. Selective Pure-phase synthesis of the multiferroic BaMF4 (M=Mg,Mn,Co,Ni, and Zn) family[J]. J Am Chem Soc, 2010, 132(50): 17684-17685. |
15 | YAN Z Y, YAN B, JIA L P. Novel kinds of down/up-conversion luminescent rare earth doped fluoride BaMgF4∶RE3+ microcrystals[J]. Mater Res Bull, 2013, 48(10): 4402-4405. |
16 | 刘忠坤. 等离子体共振效应对掺杂纳米多铁氟化物材料的发光性质的影响[D]. 沈阳: 辽宁大学, 2015. |
LIU Z K. Effect of plasmon-enhancement on luminescent properties of doped multiferroic fluoride nanoparticles[D]. Shenyang: Liaoning University, 2015. | |
17 | XIA W P, ZHANG Y F, XIONG J, et al. Facile synthesis, morphology and tunable photoluminescence properties of BaMgF4∶Ce3+/Tb3+/Eu3+phosphors[J]. Cryst Eng Comm, 2019, 21(2): 339-347. |
18 | YIN J W, WANG J, MA Y B, et al. Recent advances in the controlled synthesis and catalytic applications of two-dimensional rhodium nanomaterials[J]. ACS Mater Lett, 2021, 3(1): 121-133 |
19 | 任秀秀, 赵省向, 韩仲熙, 等. 纳米复合含能材料的制备方法、复合体系及其性能的研究进展[J]. 材料导报, 2019, 33(23): 3939-3948. |
REN X X, ZHAO X X, HAN Z X, et al. Research progress on preparation methods, composite system and its property of nano-composite energetic materials[J]. Mater Rev, 2019, 33(23): 3939-3948. | |
20 | AHMOUM H, LI G J,PIAO Y J, et al. Ab-initio, Monte Carlo and experimental investigation on structural,electronic and magnetic properties of Zn1- xNixO nanoparticles prepared via sol-gel method[J]. J Alloys Compd, 2021, 854: 157142. |
21 | FUJIHARA S, ONO S, KISHIKI Y, et al. Sol-gel synthesis of inorganic complex fluorides using trifluoroacetic acid[J]. J Fluorine Chem, 2000, 105(1): 65-70. |
22 | 刘贤哲, 张旭, 陶洪, 等. 溶胶-凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展[J]. 物理学报, 2020, 69(22): 248-263. |
LIU X Z, ZHANG X, TAO H, et al. Research progress of tin oxide-based thin films and thin-film transistors prepared by sol-gel method[J]. Acta Phys Sin, 2020, 69(22): 248-263. | |
23 | 周富荣, 左海山, 陈少锋, 等. 反相微乳法制备单分散纳米二氧化硅[J]. 江汉大学学报(自然科学版), 2006, 34(2): 27-30. |
ZHOU F R, ZUO H S, CHEN S F, et al. Preparation of monodisperse nanosize silica in reverse micelle microemulsion[J]. J Jianghan Univ (Nat Sci), 2006, 34(2): 27-30. | |
24 | JANSSENS S, WILLIAMS G V M, CLARKE D. Synthesis and characterization of rare earth and transition metal doped BaMgF4 nanoparticles[J]. J Lumin, 2013, 134: 277-283. |
25 | YANG S H, LEE H Y, TSENG P C, et al. Photoelectric properties of Sr2MgSi2O7:Eu2+ phosphors produced by co-precipitation method[J]. J Lumin, 2021, 231: 117787. |
26 | BELEARE P D, JOSHI C P, MOHARIL S V, et al. One step synthesis of complex fluoride powders for solid-state lasers[J]. J Alloys Compd, 2008, 464(1/2): 296-300. |
27 | KORE B P, KUMAR A, PANDEY A, et al. Spectroscopic investigation of up-conversion properties in green emitting BaMgF4∶Yb3+,Tb3+ phosphor[J]. Inorg Chem, 2017, 56(9): 4996-5005. |
28 | KORE B P, KUMAR A, ERASMUS L, et al. Energy transfer mechanisms and optical thermometry of BaMgF4∶Yb3+,Er3+ phosphor[J]. Inorg Chem, 2018, 57(1): 288-299. |
29 | KORE B P, KUMAR A, KROON R E, et al. Origin of visible and near IR upconversion in Yb3+-Tm3+-Er3+ doped BaMgF4 phosphor through energy transfer and cross-relaxation processes[J]. Opt Mater, 2020, 99. |
30 | 潘成龙, 刘红利, 郭芸, 等. BaMgF4∶Er3+,Yb3+上转换纳米晶的合成及其发光性能研究[J]. 物理学报, 2014, 63(15): 210-214. |
PAN C L, LIU H L, GUO Y, et al. Synthesis and upconversion luminescent properties of BaMgF4∶Er3+,Yb3+ nanocrystals[J]. Acta Phys Sin, 2014, 63(15): 210-214. |
[1] | Jia-Cheng ZHOU, Dong-Dong WANG, Yun-Bao GAO, Jing JIN, Wei JIANG. Rheological Properties and Bonding Properties of Modified Poly(Propylene Carbonate) Pressure-sensitive Adhesive [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 871-878. |
[2] | Yu-Zhu CHEN, Si-Si LIU, Meng-Meng ZHANG, Xiang-De LIN, Dong-Dong ZENG. Polyurethane Dressing Based on Antibacterial Chitosan/Carboxymethyl Cellulose Composite Drug Coating [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 252-260. |
[3] | Yu-Hua XIONG, Lei ZHOU, Shi-Zhong YANG, Bo-Zhong MU. Enzymatic Properties and Gel Breaking Performance of Low-temperature β-Mannanase [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 134-145. |
[4] | Jin LIN, Fang-Zhu WANG, Ling-Ling LYU. Preparation of Pseudo-boehamite from Industrial Materials and Its Application in Selective Hydrogenation of Isophorone [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 79-90. |
[5] | Xian WANG, Xiao-Long YANG, Rong-Peng MA, Chang-Peng LIU, Jun-Jie GE, Wei XING. Atomic Dispersion Ir‑N‑C Catalysts for Anode Anti‑poisoning Electrolysis in Fuel Cell [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1202-1208. |
[6] | Dan ZHANG, Fang LIU, Xue YANG, Dong-Hua XU, Tong-Fei SHI. Relationship Between Hardness and Impact Properties of Thermoplastic Polyurethane Blends [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1216-1223. |
[7] | Jing-Wan LIU, Qiong LI, Tao ZHANG, En-Peng WANG, Huan WANG, Xue CHEN, Chang-Bao CHEN. Research Progress on the Continuous Cropping Obstacles of Ginseng from Soil Improvement [J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1818-1832. |
[8] | Yong-Xin TANG, Li-Wu NIE. Effect of Epoxy Resin Content on the Performance of Luminous Resin Permeable Concrete [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1665-1671. |
[9] | Li-Jun WU, Shou-Jie GUO, Chao ZHANG, Zhi-Sheng LI, Wei-Cong LI, Chang-Chun YANG. In⁃situ Electrochemical Preparation of Li⁃Na Alloy and the Co⁃storage of Li+ and Na+ Ions [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1757-1765. |
[10] | Dan MENG, Kai-Yuan ZHENG, Shan-Shan CHEN, Zhao-Long ZHUO, Li-Li WANG. Preparation and Luminescence Properties of Silicon and Nitrogen Co⁃doped Carbon Dots Phosphors [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1766-1773. |
[11] | Yu-Fang SHI, Ying-Jin WANG, Jin-Yu SUN, Ming-Gen ZHAO. Synthesis, Characterization, Photothermal Properties of Dichalcone Containing Polymethoxy Aromatic Group [J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 235-240. |
[12] | Chun-Mei ZHAO, Xiu-Miao ZHOU, Xi-Xi JIN, Yu-Hang WANG, Yi-Jing DANG. Preparation of Saddle-Shaped Cyclooctatetrathiophene-Based Hybrid Nanomaterials and Fluorescence Properties [J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 283-288. |
[13] | JI Quan-Zeng, MENG Jun-Ling , WANG Hao-Cong , AN Tao , LIU Xiao-Juan, MENG Jian. Phase Transformation of La2CuO4 Cathode Film and Its Influence on Electrochemical Properties [J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 976-985. |
[14] | JI Quan-Zeng, MENG Jun-Ling , WANG Hao-Cong , AN Tao , LIU Xiao-Juan, MENG Jian. Phase Transformation of La2CuO4 Cathode Film and Its Influence on Electrochemical Properties [J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 0-0. |
[15] | XU Feng, ZHANG Kun, YIN Feng-Qin, XU Fei, PANG Yu-Xuan, CHEN Shi-Ting. Research Progress in Preparation and Application of Anion Imprinted Polymers [J]. Chinese Journal of Applied Chemistry, 2021, 38(2): 123-135. |
Viewed | ||||||||||||||||||||||||||||||||||
Full text 1128
|
|
|||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||