Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (02): 332-339.DOI: 10.19894/j.issn.1000-0518.210033
• Full Papers • Previous Articles Next Articles
Ying-Yi HUO1,2, Maripat XAMXIDIN2, Min WU1,2()
Received:
2021-01-20
Accepted:
2021-06-07
Published:
2022-02-10
Online:
2022-02-09
Contact:
Min WU
Supported by:
CLC Number:
Ying-Yi HUO, Maripat XAMXIDIN, Min WU. Simultaneous and Rapid Determination of Four Pyridine Nucleotide Coenzymes in Cells by Ultra Performance Liquid Chromatography-Mass Spectrometry[J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 332-339.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210033
待测物 | 母离子 | 子离子 | 解簇电压 | 入口电压 | 碰撞能量 | 碰撞出口电压 |
---|---|---|---|---|---|---|
Analyte | Precursor ions (m/z) | Daughter ions (m/z) | Declustering potential/V | Entrance potential/V | Collisionenergy/eV | Cell exit potential/V |
NADP+ | 742.4 | 620.3# | -60 | -10 | -22 | -10 |
? | 742.4 | 79.0 | -60 | -10 | -110 | -10 |
NADPH | 744.4 | 79.0# | -60 | -10 | -110 | -8 |
? | 744.4 | 159.0 | -60 | -10 | -72 | -16 |
NAD+ | 662.3 | 540.2# | -55 | -10 | -20 | -10 |
? | 662.3 | 79.0 | -55 | -10 | -100 | -10 |
NADH | 664.3 | 79.0# | -100 | -10 | -45 | -10 |
? | 664.3 | 408.2 | -60 | -10 | 042 | -10 |
Table 1 Mass spectrometric parameters of analytes
待测物 | 母离子 | 子离子 | 解簇电压 | 入口电压 | 碰撞能量 | 碰撞出口电压 |
---|---|---|---|---|---|---|
Analyte | Precursor ions (m/z) | Daughter ions (m/z) | Declustering potential/V | Entrance potential/V | Collisionenergy/eV | Cell exit potential/V |
NADP+ | 742.4 | 620.3# | -60 | -10 | -22 | -10 |
? | 742.4 | 79.0 | -60 | -10 | -110 | -10 |
NADPH | 744.4 | 79.0# | -60 | -10 | -110 | -8 |
? | 744.4 | 159.0 | -60 | -10 | -72 | -16 |
NAD+ | 662.3 | 540.2# | -55 | -10 | -20 | -10 |
? | 662.3 | 79.0 | -55 | -10 | -100 | -10 |
NADH | 664.3 | 79.0# | -100 | -10 | -45 | -10 |
? | 664.3 | 408.2 | -60 | -10 | 042 | -10 |
待测物 | 线性范围 | 回归方程 | 相关系数 | 检出限 | 定量限 |
---|---|---|---|---|---|
Analyte | Linear range/pmol | Regression equation | Correlation coefficient(r) | LOD/pmol | LOQ/pmol |
NADP+ | 0.03~500 | Y=5870X +4769 | 0.995 2 | 0.03 | 0.12 |
NADPH | 0.15~2500 | Y=1656X+3188 | 0.995 8 | 0.30 | 1.20 |
NAD+ | 0.03~250 | Y=8205X+11994 | 0.996 4 | 0.03 | 0.06 |
NADH | 0.03~500 | Y=5010X +3817 | 0.993 0 | 0.03 | 0.12 |
Table 2 Regression relationships,limits of detection(LODs)and limits of quantitation(LOQs)of analytes
待测物 | 线性范围 | 回归方程 | 相关系数 | 检出限 | 定量限 |
---|---|---|---|---|---|
Analyte | Linear range/pmol | Regression equation | Correlation coefficient(r) | LOD/pmol | LOQ/pmol |
NADP+ | 0.03~500 | Y=5870X +4769 | 0.995 2 | 0.03 | 0.12 |
NADPH | 0.15~2500 | Y=1656X+3188 | 0.995 8 | 0.30 | 1.20 |
NAD+ | 0.03~250 | Y=8205X+11994 | 0.996 4 | 0.03 | 0.06 |
NADH | 0.03~500 | Y=5010X +3817 | 0.993 0 | 0.03 | 0.12 |
待测物 Analyte | 保留时间 Retention time | 准确度 Accuracy | ||
---|---|---|---|---|
平均 Mean/min | 相对标准偏差 RSD/% | 平均 Mean/% | 相对标准偏差 RSD/% | |
NADP+ | 1.478 | 0.45 | 92.71 | 4.32 |
NADPH | 2.198 | 0.41 | 104.50 | 1.98 |
NAD+ | 2.984 | 0.22 | 107.65 | 7.57 |
NADH | 3.167 | 0.31 | 104.00 | 4.56 |
Table 3 Experimental results of repeatability
待测物 Analyte | 保留时间 Retention time | 准确度 Accuracy | ||
---|---|---|---|---|
平均 Mean/min | 相对标准偏差 RSD/% | 平均 Mean/% | 相对标准偏差 RSD/% | |
NADP+ | 1.478 | 0.45 | 92.71 | 4.32 |
NADPH | 2.198 | 0.41 | 104.50 | 1.98 |
NAD+ | 2.984 | 0.22 | 107.65 | 7.57 |
NADH | 3.167 | 0.31 | 104.00 | 4.56 |
待测物 Analyte | HeLa细胞内浓度 Concentration in HeLa(fmol/cell) | 大肠杆菌细胞内浓度 Concentrationin E.coli(fmole/μg wet mass) | |
---|---|---|---|
不加葡萄糖 Without glucose | 添加葡萄糖 With glucose | ||
NADP+ | 0.15±0.01 | 126.20±4.19 | 92.72±9.30 |
NADPH | 0.06±0.01 | 41.28±10.31 | 6.56±0.58 |
NAD+ | 5.80±0.55 | 1053.47±112.94 | 2747.51±37.19 |
NADH | 0.92±0.07 | 14.79±4.25 | 10.37±3.70 |
Table 4 Concentrations of analytes in HeLa and E. coli
待测物 Analyte | HeLa细胞内浓度 Concentration in HeLa(fmol/cell) | 大肠杆菌细胞内浓度 Concentrationin E.coli(fmole/μg wet mass) | |
---|---|---|---|
不加葡萄糖 Without glucose | 添加葡萄糖 With glucose | ||
NADP+ | 0.15±0.01 | 126.20±4.19 | 92.72±9.30 |
NADPH | 0.06±0.01 | 41.28±10.31 | 6.56±0.58 |
NAD+ | 5.80±0.55 | 1053.47±112.94 | 2747.51±37.19 |
NADH | 0.92±0.07 | 14.79±4.25 | 10.37±3.70 |
[1] | XIAO W, WANG R S, HANDY D E, et al. NAD (H) and NADP (H) redox couples and cellular energy metabolism[J]. Antioxid Redox Signal, 2018, 28(3):251-272. |
[2] | STEIN L R, IMAI S. The dynamic regulation of NAD metabolism in mitochondria[J]. Trends Endocrinol Metab, 2012, 23(9):420-428. |
[3] | TITOV D V, CRACAN V, GOODMAN R P, et al. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio[J]. Science, 2016, 352(6282):231-235. |
[4] | SOMOGYIA, HORVAIG, CSALAM, et al. Analytical approaches for thequantitation of redox-active pyridinedinucleotides in biological matrices[J]. Period Polytech-Chem, 2016, 60(4):218-230. |
[5] | ZHANG J, TEN PIERICK A, VAN ROSSUM H M, et al. Determination of the cytosolic NADPH/NADP ratio in saccharomyces cerevisiae using shikimate dehydrogenase as sensor reaction[J]. Sci Rep, 2015, 5:12846. |
[6] | ZHU C T, RAND D M. A hydrazine coupled cycling assay validates the decrease in redox ratio under starvation in Drosophila [J]. PLoS One, 2012, 7(10):e47584. |
[7] | P?LFI M, HAL?SZ A S, T?BI T, et al. Application of the measurement of oxidized pyridine dinucleotides with high-performance liquid chromatography-fluorescence detection to assay the uncoupled oxidation of NADPH by neuronal nitric oxide synthase[J]. Anal Biochem, 2004, 326(1):69-77. |
[8] | QIAN Y, BANERJEE S, GROSSMAN C E, et al. Transaldolase deficiency influences the pentose phosphate pathway, mitochondrial homoeostasis and apoptosis signal processing[J]. Biochem J, 2008, 415(1):123-134. |
[9] | LUO B, GROENKE K, TAKORS R, et al. Simultaneous determination of multiple intracellular metabolites in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle by liquid chromatography-mass spectrometry[J]. J Chromatogr A, 2007, 1147(2):153-164. |
[10] | CORDELL R L, HILL S J, ORTORI C A, et al. Quantitative profiling of nucleotides and related phosphate-containing metabolites in cultured mammalian cells by liquid chromatography tandem electrospray mass spectrometry[J]. J Chromatogr B Anal Technol Biomed Life Sci, 2008, 871(1):115-124. |
[11] | 姜丹丹, 李伟, 周怀彬, 等. 超高效液相色谱-质谱法测定细胞中嘌呤核苷酸的方法探究[J]. 分析测试学报, 2013, 32(10):1202-1206. |
JIANG D D, LI W, ZHOU H B, et al. Study on determination of purine nucleotides by ultra performance liquid chromatography-mass spectrometry[J]. J Instrum Anal, 2013, 32(10):1202-1206. | |
[12] | MICHOPOULOS F, WHALLEY N, THEODORIDIS G, et al. Targeted profiling of polar intracellular metabolites using ion-pair-high performance liquid chromatography and-ultra high performance liquid chromatography coupled to tandem mass spectrometry: applications to serum, urine and tissue extracts[J]. J Chromatogr A, 2014, 1349:60-68. |
[13] | WU J T, WU L H, KNIGHT J A. Stability of NADPH: effect of various factors on the kinetics of degradation[J]. Clin Chem, 1986, 32(2):314-319. |
[14] | PITT J J. Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry[J]. Clin Biochem Rev, 2009, 30(1):19-34. |
[15] | CLARK D P. The fermentation pathways of Escherichia coli [J]. FEMS Microbiol Rev, 1989, 5(3):223-234. |
[16] | HAN K, LIM H C, HONG J. Acetic acid formation in Escherichia coli fermentation[J]. Biotechnol Bioeng, 1992, 39(6):663-671. |
[1] | Jin-Li ZHAO, Zong-Ren YU, Bo-Min SU. Analysis of Egg Whites from Burial Murals by Pyrolysis-Gas Chromatography/Mass Spectrometry [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 562-570. |
[2] | Shu-Fang LI, Xue-Fei HAO, Hong-Qi WANG, Xiao-Meng GUO, Shu-Hui FENG, Hai-Yan YIN, Dong-Mei LIU, Yong-Jie YU. Automatic Data Analysis Strategy Coupled with Q Exactive High Resolution Mass Spectrometry for Studying Different Industrial Process of Lonicerae Japonicae Flos [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 819-827. |
[3] | Hui-Jing SUN, Dong-Ni CUI. Determination of Aldicarb, Aldicarb Sulfoxide, Aldicarb Sulfone in Water by Solid Phase Extraction and UPLC⁃MS/MS with Isotope Dilution [J]. Chinese Journal of Applied Chemistry, 2022, 39(3): 470-479. |
[4] | Lin YUAN, Yan WU, Liu-Xi CHU, Wei WANG, Min-Hui ZHU, He ZHANG, Jin YANG, Hui-Hua DENG. Determination of Thyroids and Steroids in Hair by High Performance Liquid Chromatography Tandem Mass Spectrometry [J]. Chinese Journal of Applied Chemistry, 2022, 39(11): 1703-1715. |
[5] | Xiao-Cui YI, Wei YI, Lin LEI, Hao ZENG, Yi-Feng JIANG, Wei-Li LI, Chun-Lin CHEN. Simultaneous Determination of Six Benzodiazepines in Rat Urine by Liquid Chromatography Tandem Mass Spectrometry [J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 340-348. |
[6] | WANG Wen-Hua, MA Jun, ZANG Wen-Sheng, ZHANG Hong-Zhou, GONG Yu-Rong, QI Feng-Li, SU Ji-Gong, WAN Jian-Feng, FAN Hong-Kai. Determination of N-Nitrosodimethylamine in Spiramycin by Gas Chromatography-Tandem Mass Spectrometry [J]. Chinese Journal of Applied Chemistry, 2021, 38(8): 1007-1013. |
[7] | ZHU Fu-Qiang, DING Wei-Ping, HAN Yan-Jun, TIAN Hong-Gen. Determination of Five Alpha-agonists in Animal Derived Food by Ultra-performance Liquid Chromatography-Tandem Mass Spectrometry Using an Enhanced Matrix Removal-lipid Sorbent for Clean-up [J]. Chinese Journal of Applied Chemistry, 2021, 38(6): 713-721. |
[8] | GAO Song-Hong, YANG Di, LI Zhong-Qi, ZHENG Fei, JEON You-Jin, DAI Yu-Lin. Rapid Resolution Liquid Chromatography with Tandem Mass Spectrometry on Pharmacokinetics of Type 2 Diabetic Rats with Oral Administration of Sijunzitang Decoration [J]. Chinese Journal of Applied Chemistry, 2021, 38(3): 0-0. |
[9] | ZHANG Na, LI Le-Le, HUANG Xin, LIU Shu-Ying. Determination of Oligosaccharides in Ginseng from Different Growth Environments by Ultra Performance Liquid Chromatography Triple Quadrupole Tandem Mass Spectrometry Combined with Solid Phase Methylation [J]. Chinese Journal of Applied Chemistry, 2021, 38(3): 247-255. |
[10] | LI Le, TAN Lu-Ying, WANG Cai-Xia, LI Kun, LI Ping-Ya, LIU Jin-Ping, LIU Yun-He. Identification of Chemical Constituents of American Ginseng Fruit Pedicels by Ultra-performance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry [J]. Chinese Journal of Applied Chemistry, 2021, 38(3): 256-270. |
[11] | YAN Yi-Meng, YUE Ke-Xin, LIU Yu-Sheng, CHEN Ge, TIAN Han-Wen, LIU Zhong-Ying, LIU Zhi-Qiang, SONG Feng-Rui, PI Zi-Feng. Characterization of Components in Huangying Kechuan Syrup by Ultra-high Liquid Chromatography Tandem Quadrupole-time-of-flight Mass Spectrometry [J]. Chinese Journal of Applied Chemistry, 2021, 38(3): 276-288. |
[12] | WANG En-Peng, DU Lian-Yun, JIANG Tao, LI Guang, WEI Kun, ZHU Shuang, YUE Hao, CHEN Chang-Bao. Whitening Activity, Antioxidant Activity and Ginsenosides Analysis of Ginseng Wash Water [J]. Chinese Journal of Applied Chemistry, 2021, 38(3): 289-297. |
[13] | LYU Zhao-Feng, CHEN Shi-Heng, WANG Nan, BAI Cui, XIAO Dan. Analysis of Amino Acid Sequence of Antimicrobial Peptides in the Fermentation Broth of Paecilomyces hepiali by RP-HPLC-MS [J]. Chinese Journal of Applied Chemistry, 2021, 38(3): 298-304. |
[14] | ZHANG Nan, LI Tie, YANG Guang, HUANG Xin, YUE Hao, WANG Yang, LIU Jun-Tong, LIU Shu-Ying, WANG Fu-Chun. Screening for Urine Metabolic Biomarkers of Transient Ischemic Attack [J]. Chinese Journal of Applied Chemistry, 2021, 38(3): 305-314. |
[15] | GAO Song-Hong, YANG Di, LI Zhong-Qi, ZHENG Fei, JEON You-Jin, DAI Yu-Lin. Rapid Resolution Liquid Chromatography with Tandem Mass Spectrometry on Pharmacokinetics of Type 2 Diabetic Rats with Oral Administration of Sijunzitang Decoration [J]. Chinese Journal of Applied Chemistry, 2021, 38(3): 315-322. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||