Chinese Journal of Applied Chemistry ›› 2021, Vol. 38 ›› Issue (10): 1213-1225.DOI: 10.19894/j.issn.1000-0518.210373
• Review • Previous Articles Next Articles
Cheng ZOU1, Yan-Zi GAO1, Mei-Na YU1, Jiu-Mei XIAO2, Lan-Ying ZHANG, Huai YANG1()
Received:
2021-07-29
Accepted:
2021-09-01
Published:
2021-10-01
Online:
2021-10-15
Contact:
Huai YANG
About author:
yanghuai@pku.edu.cnSupported by:
CLC Number:
Cheng ZOU, Yan-Zi GAO, Mei-Na YU, Jiu-Mei XIAO, Lan-Ying ZHANG, Huai YANG. Recent Advances in Liquid Crystal/Polymer Composites and Their Applications in Reverse⁃mode Electrically Switchable Light⁃transmittance Controllable Films[J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1213-1225.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210373
Fig.1 Schematic representation of the microstructures for different types of liquid crystal/polymer composites: (a) polymer-dispersed liquid crystals, (b) polymer-stabilized liquid crystals, (c) polymer-wall-stabilized liquid crystals, (d) polymer-dispersed & -stabilized liquid crystals
Fig.2 Typical scanning electron microscope (SEM) images of PDLC[23]: A1—A4 were samples with different proportions of difunctional and trifunctional epoxy monomers
Fig.5 Typical SEM images of PD&SLC[32]: (a) schematic representation of the microstructure, (b) top-view SEM image of the film, (c) side-view SEM image of the polymer microstructure, (d) side-view SEM image of the film
Fig.9 (a) Schematic diagram, (b) photographs, (c) transmittance and haze dependence on electric-field intensity and (d) polarized optical microscope images of the reverse-mode film based on nematic liquid crystals with negative dielectric anisotropy[36]
Fig.12 Schematic diagram of the charge distribution in the reverse-mode PDLC based on built-in electric fields[50]: built-in DC electric field (Edc) across the film with (a) a highly conductive liquid crystal, (b) a highly conductive polymer matrix, (c) ions frozen in the liquid crystal/polymer interface
Fig.15 (a)—(d) Schematic diagram of a two-step UV polymerization route for making the PD&PSLC film and (e) some of the chemical structures and physical properties of the reagents used in the study[55]
Fig.16 (a) Shearing force-displacement curves of the commercial PDLCs and the as-made LCs/PCs containing 0 %, 0.5 %, 1.0 % and 2.0 % (mass percent)LCPMs, respectively. (b) Digital photographs demonstrating the flexibility and robustness of the as-made LCs/PC:in the diagram E is short for electric field, LE is short for low-frequency electric field, HE is short for high-frequency electric field[55]
1 | WHITE T J, BROER D J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers[J]. Nat Mater, 2015, 14(11): 1087-1098. |
2 | SAEED M H, ZHANG S, CAO Y, et al. Recent advances in the polymer dispersed liquid crystal composite and its applications[J]. Molecules, 2020, 25(23): 5510. |
3 | DOANE J W, VAZ N A, WU B G, et al. Field controlled light scattering from nematic microdroplets[J]. Appl Phys Lett, 1986, 48(4): 269-271. |
4 | CHIDICHIMO G, BENEDUCI A, MALTESE V, et al. 2D/3D switchable displays through PDLC reverse mode parallax barrier[J]. Liq Cryst, 2018, 45(13/14/15): 2132-2138. |
5 | LIU S, LI Y, ZHOU P, et al. Reverse-mode PSLC multi-plane optical see-through display for AR applications[J]. Opt Express, 2018, 26(3): 3394. |
6 | LIANG X, CHEN M, WANG Q, et al. Active and passive modulation of solar light transmittance in a hybrid thermochromic soft-matter system for energy-saving smart window applications[J]. J Mater Chem C, 2018, 6(26): 7054-7062. |
7 | DE SIO L, LLOYD P F, TABIRYAN N V, et al. Thermoplasmonic activated reverse-mode liquid crystal gratings[J]. ACS Appl Nano Mater, 2019, 2(5): 3315-3322. |
8 | SUN J, WU S. Recent advances in polymer network liquid crystal spatial light modulators[J]. J Polym Sci, Part B: Polym Phys, 2014, 52(3): 183-192. |
9 | REN H, FAN Y, GAUZA S, et al. Tunable microlens arrays using polymer network liquid crystal[J]. Opt Commun, 2004, 230(4/5/6): 267-271. |
10 | XIONG G, HAN G, SUN C, et al. Phototunable microlens array based on polymer dispersed liquid crystals[J]. Adv Funct Mater, 2009, 19(7): 1082-1086. |
11 | ZHANG S, LI C, WANG Q, et al. Fluorescence enhancement and encapsulation of quantum dots via a novel crosslinked vinyl-ether liquid crystals/polymer composite film[J]. Polymer, 2020, 207: 122834. |
12 | ZHOU L, CHEN G, SHEN W, et al. Effect of functionality of thiol on the optical properties of liquid crystals/polymer composite films[J]. Liq Cryst, 2021, 48(3): 313-321. |
13 | ZHOU L, HE Z, HAN C, et al. Switchable anti-peeping film for liquid crystal displays from polymer dispersed liquid crystals[J]. Liq Cryst, 2019, 46(5): 718-724. |
14 | KAKIUCHIDA H, MATSUYAMA A, OGIWARA A. Normal- and reverse-mode thermoresponsive controllability in optical attenuation of polymer network liquid crystals[J]. ACS Appl Mater Interfaces, 2019, 11(21): 19404-19412. |
15 | DIERKING I. Polymer network-stabilized liquid crystals[J]. Adv Mater, 2000, 12(3): 167-181. |
16 | KIKUCHI H, YAMAMOTO H, SATO H, et al. Formation of polymer-wall-stabilized bend-mode liquid crystal cells[J]. J Photopolym Sci Technol, 2003, 16(2): 181-186. |
17 | GHEORGHIU N, WEST J L, GLUSHCHENKO A V, et al. Patterned field induced polymer walls for smectic A bistable flexible displays[J]. Appl Phys Lett, 2006, 88(26): 263511. |
18 | GUO S, LIANG X, ZHANG H, et al. An electrically light-transmittance-controllable film with a low-driving voltage from a coexistent system of polymer-dispersed and polymer-stabilised cholesteric liquid crystals[J]. Liq Cryst, 2018, 45(12): 1854-1860. |
19 | GUO S, LIANG X, ZHANG C, et al. Preparation of a thermally light-transmittance-controllable film from a coexistent system of polymer-dispersed and polymer-stabilized liquid crystals[J]. ACS Appl Mater Interfaces, 2017, 9(3): 2942-2947. |
20 | LIANG X, GUO S, CHEN M, et al. A temperature and electric field-responsive flexible smart film with full broadband optical modulation[J]. Mater Horizons, 2017, 4(5): 878-884. |
21 | NICOLETTA F P, CHIDICHIMO G, CUPELLI D, et al. Electrochromic polymer-dispersed liquid-crystal film: a new bifunctional device[J]. Adv Funct Mater, 2005, 15(6): 995-999. |
22 | MENG Q, CAO H, KASHIMA M, et al. Effects of the structures of epoxy monomers on the electro-optical properties of heat-cured polymer-dispersed liquid crystal films[J]. Liq Cryst, 2010, 37(2): 189-193. |
23 | ZHANG T, KASHIMA M, ZHANG M, et al. Effects of the functionality of epoxy monomer on the electro-optical properties of thermally-cured polymer dispersed liquid crystal films[J]. RSC Adv, 2012, 2(5): 2144-2148. |
24 | ZHANG C, WANG D, CAO H, et al. Preparation and electro-optical properties of polymer dispersed liquid crystal films with relatively low liquid crystal content[J]. Polym Adv Technol, 2013, 24(5): 453-459. |
25 | LU H, SONG Z, ZHANG J, et al. The influence of helical twisting power on the electro-optical properties of reverse-mode polymer-stabilised cholesteric texture[J]. Liq Cryst, 2014, 41(4): 615-620. |
26 | YU H H, HWANG S J, CHEN R L, et al. Study of the purifying affects of thermal annealing for polymer-wall liquid crystal cells[J]. Liq Cryst, 2008, 35(12): 1339-1343. |
27 | WU S, FUH A Y. Two-dimensional diffraction grating based on polymer-dispersed liquid crystals[J]. Jpn J Appl Phys, 2004, 43(10): 7077-7082. |
28 | SONG D H, LEE S R, YOON T, et al. Multi-dimensional liquid crystal alignment effect of polymer wall on vertically aligned liquid crystal cell[J]. Jpn J Appl Phys, 2010, 49(1): 11702. |
29 | LEE Y, JANG S, JUNG J, et al. Mechanical stability of pixel-isolated liquid crystal mode for flexible display application[J]. Mol Cryst Liq Cryst, 2006, 458(1): 81-87. |
30 | ZHENG W, LEE M C. Attainment of planarly aligned liquid crystal using vertical alignment polymer walls[J]. Mol Cryst Liq Cryst, 2012, 553(1): 28-35. |
31 | KIKUCHI H, YAMAMOTO H, SATO H, et al. Bend-mode liquid crystal cells stabilized by aligned polymer walls[J]. Jpn J Appl Phys, 2005, 44(2): 981-989. |
32 | LIANG X, CHEN M, GUO S, et al. Dual-band modulation of visible and near-infrared light transmittance in an all-solution-processed hybrid micro-nano composite film[J]. ACS Appl Mater Interfaces, 2017, 9(46): 40810-40819. |
33 | BARILE C J, SLOTCAVAGE D J, HOU J, et al. Dynamic windows with neutral color, high contrast, and excellent durability using reversible metal electrodeposition[J]. Joule, 2017, 1(1): 133-145. |
34 | MENG C, TSENG M C, TANG S T, et al. Normally transparent smart window with haze enhancement via inhomogeneous alignment surface[J]. Liq Cryst, 2019, 46(3): 484-491. |
35 | GRANQVIST C. Electrochromic materials: out of a niche[J]. Nat Mater, 2006, 5(2): 89. |
36 | HU X, ZHANG X, YANG W, et al. Stable and scalable smart window based on polymer stabilized liquid crystals[J]. J Appl Polym Sci, 2020: 48917. |
37 | ZHAO R, LI X, WANG K, et al. Effect of the introduction of mono-functional monomer on the electro-optic properties of reverse-mode polymer stabilised cholesteric liquid crystal[J]. Liq Cryst, 2021, 48(8): 1162-1174. |
38 | YANG D K, CHIEN L C, DOANE J W. Cholesteric liquid crystal/polymer dispersion for haze-free light shutters[J]. Appl Phys Lett, 1992, 60(25): 3102-3104. |
39 | 吴琴. 正反向调光膜性能及应用研究[J]. 中国高新科技, 2019(1): 107-109. |
WU Q. Normal- and reverse-mode light-transmittance controllable films and their applications[J]. Zhong Guo Gao Xin Ke Ji, 2019(1): 107-109. | |
40 | KIM D, HWANG D Y, PARK J, et al. Liquid crystal-based flexible smart windows on roll-to-roll slot die-coated Ag nanowire network films[J]. J Alloys Compd, 2018, 765: 1090-1098. |
41 | REN H, WU S. Reflective reversed-mode polymer stabilized cholesteric texture light switches[J]. J Appl Phys, 2002, 92(2): 797-800. |
42 | HIKMET R A M. Electrically induced light scattering from anisotropic gels[J]. J Appl Phys, 1990, 68(9): 4406-4412. |
43 | MURAI H, GOTOH T, NAKATA T, et al. Homeotropic reverse-mode polymer-liquid crystal device[J]. J Appl Phys, 1997, 81(4): 1962-1965. |
44 | MACCHIONE M, CUPELLI D, FILPO G D, et al. Rough surfaces for orientation control in reverse mode polymer dispersed liquid crystal films[J]. Liq Cryst, 2000, 27(7): 917-920. |
45 | HIKMET R A M, ZWERVER B H. Structure of cholesteric gels and their electrically induced light scattering and colour changes[J]. Liq Cryst, 1992, 12(2): 319-336. |
46 | AHMAD F, JAMIL M, JEON Y J. Reverse mode polymer stabilized cholesteric texture (PSCT) light shutter display—a short review[J]. J Mol Liq, 2017, 233: 187-196. |
47 | NOLAN P, COATES D. Reverse mode polymer dispersed liquid crystal display incorporating a dual frequency addressable liquid crystal mixture[J]. Mol Cryst Liq Cryst Lett, 1991, 8(4): 75-83. |
48 | FAN Y, REN H, LIANG X, et al. Dual-frequency liquid crystal gels with submillisecond response time[J]. Appl Phys Lett, 2004, 85(13): 2451-2453. |
49 | WEN C, WU S. Dielectric heating effects of dual-frequency liquid crystals[J]. Appl Phys Lett, 2005, 86(23): 231104. |
50 | CUPELLI D, NICOLETTA F P, DE FILPO G, et al. Reverse mode operation polymer dispersed liquid crystal with a positive dielectric anisotropy liquid crystal[J]. J Polym Sci, Part B: Polym Phys, 2011, 49(4): 257-262. |
51 | NICOLETTA F P, DE FILPO G, LANZO J, et al. A method to produce reverse-mode polymer-dispersed liquid-crystal shutters[J]. Appl Phys Lett, 1999, 74(26): 3945-3947. |
52 | NICOLETTA F P, CARUSO C, DE FILPO G, et al. Electric, electro-optical, and morphological properties of two-step-polymerization PDLC[J]. Proc SPIE-Int Soc Opt Eng, 1998, 3319:285-288. |
53 | WANG H, GONG H, SONG P, et al. Reverse-mode polymer dispersed liquid crystal films prepared by patterned polymer walls[J]. Liq Cryst, 2015, 42(9): 1320-1328. |
54 | SHIN Y, OH N, KWON S. Electro-optical properties of normally transparent polymer dispersed liquid crystal cells with polymer wall and network structure[J]. Mol Cryst Liq Cryst, 2017, 647(1): 415-421. |
55 | LIANG X, CHEN M, GUO S, et al. Programmable electro-optical performances in a dual-frequency liquid crystals/ polymer composite system[J]. Polymer, 2018, 149: 164-168. |
[1] | Bing-Shuai CHEN, Hai-Tao ZHUO, Shu HUANG, Shao-Jun CHEN. Advances of High-Performance Polymer Binders for Silicon-Based Anodes [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 625-639. |
[2] | Xue-Bo LEI, Hui-Jing LIU, He-Yu DING, Guo-Dong SHEN, Run-Jun SUN. Research Progress on Photocatalysts for Degradation of Organic Pollutants in Printing and Dyeing Wastewater [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 681-696. |
[3] | Yu-Chen TAO, Xiao-Hui HOU, Deng-Ke YIN, Ye YANG. Effect of Electric Field-Regulating Cholesterol-based Liquid Crystal Films on the Growth and Differentiation of Fibroblasts [J]. Chinese Journal of Applied Chemistry, 2023, 40(4): 546-553. |
[4] | Jin-Jian LIU, Yi-Wei LU. Multiple-Responsive Coordination Polymers Based on a Carboxybenzyl Viologen Ligand [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 397-403. |
[5] | Bo XIONG, Tai-Hua LI, Wu-Ping ZHOU, Chang-Yu LIU, Xiao-Long XU. Preparation of Cu2O/CuO-g-C3N4 Adsorbent by One-step Thermal Polymerization and Adsorption Properties for Methyl Orange [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 420-429. |
[6] | Jin-Jian LIU, Na LIU, Feng-Yi YANG. Synthesis and Photochromic Properties of Two Isostructural Viologen Coordination Polymers [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 245-251. |
[7] | Shi-Peng JIANG, Yu-Xi ZHOU, Pei-Ran MENG, Yan-Xuan XIE, Zhi-Yi SONG, Huan-Ying ZHAO, Yue SUN. Preparation and Properties of Ultramicro Imprinting Sensor for Human Serum Albumin via Metal-free Visible-light-induced Atom Transfer Radical Polymerization [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 299-308. |
[8] | Yu-Huang LI, Ze-Yi LU, Hong-Mei YUAN, Gang WANG, Cheng-Jiang ZHANG. Preparation and Application of Acylhydrazone Bonded Polymer Gel in Nitrofuran Drugs Analysis [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 100-108. |
[9] | Ye LIU, Shao-Bo GUO, Yan-Li LIANG, Hong-Guang GE, Jian-Qi MA, Zhi-Feng LIU, Bo LIU. Preparation and Catalytic Performance of Core‑Shell CuFe2O4@NH2@Pt Nanocomposites [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1237-1245. |
[10] | Guan-Yu XIE, Mao LI. Topological Metallopolymers Synthesized by Electropolymerization and Their Photoelectric Properties [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1246-1251. |
[11] | Hong-Xia CHEN, Bao-Xia LI, Ying-Ming YAO, Peng LIU. Synthesis, Characterization and Catalytic Activity of Benzylamine⁃bridged Bis(phenolato)lanthanide Complexes [J]. Chinese Journal of Applied Chemistry, 2022, 39(5): 843-851. |
[12] | Yuan-Hao JIAO, Hong-Yan CUI, Liu-Wei ZHANG, Shuang ZENG, Hao WANG, Ming ZHANG, Jing-Yun WANG, Qi-Xian CHEN. Fabrication of Multifunctional Gene Delivery Systems Responsible to Intracellular Microenvironments Through in situ Polymerization [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1510-1522. |
[13] | Xiang-Zhi YE, Yun-Shui DENG, Yuan LIU, Yong-Liu ZHOU, Jian-Xiong HE, Chun-Rong XIONG. Glass Sphere Supported Amorphous Organotitanium Polymer to Improve the Turnover Frequency in Photocatalytic Reduction of CO2 [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1554-1563. |
[14] | He-Chang SHI, Yan-Cun YU, Chang-Yu HAN. Morphology, Rheological and Mechanical Properties of Polyethylene/Aluminium Oxide Composites [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1593-1599. |
[15] | Ying CHEN, Tian-Ding HU, Yun-Li LIU, Pu ZHANG, Yun-Fei ZHI, Shao-Yun SHAN. Research Progress on Chemical Resourse Utilization of Sulfur Dioxide [J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 223-234. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||