[1] JEDDI K, SARIKHANI K, GHAZNAVI M, et al. Enhanced cycling performance of a high-energy and low-cost lithium sulfur battery with a sulfur/hardwood charcoal composite cathode material[J]. J Solid State Electr, 2015, 19(4): 1161-1169. [2] KIM H, JEONG G, KIM Y U, et al. Metallic anodes for next generation secondary batteries[J]. Chem Soc Rev, 2013, 42(23): 9011-34. [3] ZHANG S S. Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions[J]. J Power Sources, 2013, 231: 153-162. [4] DIAO Y, XIE K, XIONG S Z, et al. Shuttle phenomenon-the irreversible oxidation mechanism of sulfur active material in Li-S battery[J]. J Power Sources, 2013, 235: 181-186. [5] REDDY M V, SUBBARAO G V, CHOWDARI B V. Metal oxides and oxysalts as anode materials for Li ion batteries[J]. Chem Rev, 2013, 113(7): 5364-457. [6] TIAN W, HU H, WANG Y, et al. Metal-organic frameworks mediated synthesis of one-dimensional molybdenum-based/carbon composites for enhanced lithium storage[J]. ACS Nano, 2018, 12(2): 1990-2000. [7] PEI S, CHENG H M. The reduction of graphene oxide[J]. Carbon, 2012, 50(9): 3210-3228. [8] MATTEVI C, KIM H, CHHOWALLA M. A review of chemical vapour deposition of graphene on copper[J]. J Mater Chem, 2011, 21(10): 3324-3334. [9] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. [10] HU H, ZHAO Z, WAN W, et al. Ultralight and highly compressible graphene aerogels[J]. Adv Mater, 2013, 25(15): 2219-2223. [11] HU H, ZHAO Z B, WAN W B, et al. Polymer/graphene hybrid aerogel with high compressibility, conductivity, and “sticky” superhydrophobicity[J]. ACS Appl Mater Interfaces, 2014, 6(5): 3242-3249. [12] LI H F, YANG X W, WANG X M, et al. Dense integration of graphene and sulfur through the soft approach for compact lithium/sulfur battery cathode[J]. Nano Energy, 2015, 12: 468-475. [13] ZHANG C, LV W, ZHANG W G, et al. Reduction of graphene oxide by hydrogen sulfide: a promising strategy for pollutant control and as an electrode for Li-S batteries[J]. Adv Energy Mater, 2014, 4(7): 1301565. [14] ZHAO M Q, LIU X F, ZHANG Q, et al. Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries[J]. ACS Nano, 2012, 6(12): 10759-10769. [15] DING B, YUAN C Z, SHEN L F, et al. Chemically tailoring the nanostructure of graphenenanosheets to confine sulfur for high-performance lithium-sulfur batteries[J]. J Mater Chem A, 2013, 1(4): 1096-1101. [16] WANG J Z, LU L, CHOUCAIR M, et al. Sulfur-graphene composite for rechargeable lithium batteries[J]. J Power Sources, 2011, 196(16): 7030-7034. [17] LYU Z, XU D, YANG L, et al. Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium sulfur batteries[J]. Nano Energy, 2015, 12: 657-665. [18] CAO Y, LI X, AKSAY I A, et al. Sandwich-type functionalized graphene sheet-sulfur nanocomposite for rechargeable lithium batteries[J]. Phys Chem Chem Phys, 2011, 13(17): 7660-7665. [19] MANTHIRAM A, FU Y, SU Y S. Challenges and prospects of lithium-sulfur batteries[J]. Acc Chem Res, 2013, 46(5): 1125-1134. [20] WANG H, YANG Y, LIANG Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium sulfur battery cathode material with high capacity and cycling stability[J]. Nano Lett, 2011, 11(7): 2644-2647. [21] JI L W, RAO M M, ZHENG H M, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J]. J Am Chem Soc, 2011, 133(46): 18522-18525. [22] CHEN J, YAO B, LI C, et al. An improved Hummers method for eco-friendly synthesis of graphene oxide[J]. Carbon, 2013, 64: 225-229. [23] QU J Y, GAO F, ZHOU Q, et al. Highly atom-economic synthesis of graphene/Mn3O4 hybrid composites for electrochemical supercapacitors[J]. Nanoscale, 2013, 5(7): 2999-3005. [24] 高峰, 徐子迪, 谢亚桥, 等. 简易法制备孔隙可调的三维石墨烯宏观体及锂电性能的研究[J]. 辽宁师范大学学报(自然科学版), 2019, 42(3): 344-353. GAO F, XU Z D, XIE Y Q, et al. Simple reparation of three-dimensional graphene with adjustable pore structure and performance of lithium batteries[J]. J Liaoning Normal Univ (Nat Sci Edn). 2019, 42(3): 344-353 [25] 曲江英, 李雨佳, 李传鹏, 等. 还原氧化石墨烯/Mn3O4纳米复合物的合成及其在超级电容器中的应用[J]. 新型炭材料, 2014, 29(3): 186-192. QU J Y, LI Y J, LI C P, et al. Synthesis of reduced graphene oxide/Mn3O4 nanocomposites for supercapacitors [J]. New Carbon Mater, 2014, 29(3): 186-192. [26] GAO F, QU J , ZHAO Z, et al. Efficient synthesis of graphene/sulfur nanocomposites with high sulfur content and their application as cathodes for Li-S batteries[J]. J Mater Chem A, 2016, 4(41): 16219-16224. [27] 王金莹, 曲江英, 李杰兰, 等. 二次包覆法制备煤沥青基硅/碳复合物及其锂离子电池性能[J]. 应用化学, 2020, 37(5): 562-569. WANG J Y, QU J Y, LI J L, et al. Two-step coating synthesis of silicon/carbon composite based on coal tar pitch and its lithium battery performance[J]. Chinese J Appl Chem. 2020, 37(5): 562-569. [28] 赵佳欣, 谢亚桥, 李杰兰, 等. 石墨烯迷你马达的自组装制备及其乙醇驱动运动和油品吸附性能[J]. 应用化学, 2019, 36(10): 1202-1210. ZHAO J X, XIE Y Q, LI J L, et al. Self-assembly of graphene mimi-motro and its ethanol-driven motion and oil adsorption properties[J]. Chinese J Appl Chem. 2019, 36(10): 1202-1210. [29] WANG Z, DONG Y, LI H, et al. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide[J]. Nat Commun, 2014, 5: 5002-5009. [30] 谢亚桥, 赵佳欣, 李杰兰,等. 氯化钠模板诱导木质素基多孔炭的制备及其超级电容器性能[J]. 应用化学, 2019, 36(4): 482-488. XIE Y Q, ZHAO J X, LI J L, et al. Synthesis of solium chloride induced lignin-based porous carbon and their supercapacitor performances[J]. Chinese J Appl Chem. 2019, 36(4): 482-488. [31] FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nat Nanotechnol, 2013, 8(4): 235-46. [32] GOTOH K, KINUMOTO T, FUJII E, et al. Exfoliated graphene sheets decorated with metal/metal oxide nanoparticles: simple preparation from cation exchanged graphite oxide[J]. Carbon, 2011, 49(4): 1118-1125. [33] STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565. [34] XUE Y, DAI P, ZHOU M, et al. Multifunctional superelastic foam-like boron nitride nanotubular cellular-network architectures[J]. ACS Nano, 2017, 11(1): 558-568. [35] DONG L, CHEN Z, ZHAO X, et al. A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water[J]. Nat Commun, 2018, 9(1): 76. [36] SU D, CORTIE M, WANG G. Fabrication of N-doped graphene-carbon nanotube hybrids from prussian blue for lithium-sulfur batteries[J]. Adv Energy Mater, 2017, 7(8): 1602014. [37] BARCHASZ C, LEPR TRE J C, ALLOIN F, et al. New insights into the limiting parameters of the Li/S rechargeable cell[J]. J Power Sources, 2012, 199: 322-330. |