[1] JIANG Q W, JING Y, NI Y Y, et al. Potentiality of carbon quantum dots derived from chitin as a fluorescent sensor for cetection of ClO-[J]. Microchem J, 2020, 157(9): 105111. [2] QI H J, TENG M, LIU M, et al. Biomass-derived nitrogen-doped carbon quantum qots: highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines[J]. J Colloid Sci, 2019, 539(3): 332-341. [3] GAO X H, DU C, ZHUANG Z H, et al. Carbon quantum dots-based nanoprobes for metal ions detection[J]. J Mater Chem C, 2016, 4(29): 6927-6945. [4] LI L L, WU G H, YANG G H, et al. Focusing on luminescent graphene quantum dots: current status and future perspectives[J]. Nanoscale, 2013, 5(10): 4015-4039. [5] SHEN J H, ZHU Y H, YANG X L, et al. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices[J]. Chem Commun (Camb), 2012, 48(31): 3686-3699. [6] ZHANG Z P, ZHANG J, CHEN N, et al. Graphene quantum dots: an emerging material for energy-related applications and beyond[J]. Energy Environ Sci, 2012, 5(10): 8869. [7] 傅鹏, 周丽华, 唐连凤, 等. 碳量子点的制备及其在能源与环境领域应用进展[J]. 应用化学, 2016, 33(7): 742-755. FU P, ZHOU L H, TANG L F, et al. Progress in preparation of carbon quantum dots and its application in the fields of energy and environment[J]. Chinese J Appl Chem, 2016, 33(7): 742-755. [8] CHEN Y H, ZHENG M T, XIAO Y, et al. A self-quenching-resistant carbon-dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission[J]. Adv Mater, 2016, 28(2): 312-318. [9] TU Z Q, HU E Z, WANG B B, et al. Tribological behaviors of Ni-modified citric acid carbon quantum dot particles as a green additive in polyethylene glycol[J]. J Friction, 2019, 8(1): 182-197. [10] PU Z F, WEN Q L, YANG Y J, et al. Fluorescent carbon quantum dots synthesized using phenylalanine and citric acid for selective detection of Fe3+ ions[J]. Spectrochim Acta Part A, 2020, 229(3): 117944. [11] JIA J B, SUN Y, ZHANG Y J, et al. Facile and efficient fabrication of bandgap tunable carbon quantum dots derived from anthracite and their photoluminescence properties[J]. Front Chem, 2020, 8(2): 123. [12] WANG Y, WU W T, WU M B, et al. Yellow-visual fluorescent carbon quantum dots from petroleum coke for the efficient detection of Cu2+ ions[J]. New Res Carbon Mater, 2015, 30(6): 550-559. [13] DING H, ZHOU X X, WEI J S, et al. Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications[J]. Carbon, 2020, 167(10): 322-344. [14] MOHEBBI A, FARAJZADEH M A, MAHMOUDZADEH A, et al. Combination of poly (ε-caprolactone) grafted graphene quantum dots-based dispersive solid phase extraction followed by dispersive liquid-liquid microextraction for extraction of some pesticides from fruit juices prior to their quantification by gas chromatography[J].Microchem J, 2020, 153(3): 104328. [15] LU M C, DUAN Y X, SONG Y H, et al. Green preparation of versatile nitrogen-doped carbon quantum dots from watermelon juice for cell imaging, detection of Fe3+ ions and cysteine, and optical thermometry[J]. J Mol Liq, 2018, 269(11): 766-774. [16] XIAO P, KE Y, LU J, et al. Photoluminescence immunoassay based on grapefruit peel-extracted carbon quantum dots encapsulated into silica nanospheres for p53 protein[J]. Biochem Eng J, 2018, 139(11): 109-116. [17] ARUMUGHAM T, ALAGUMUTHU M, AMIMODU R G, et al. A sustainable synthesis of green carbon quantum dot (CQD) from catharanthus roseus (white flowering plant) leaves and investigation of its dual fluorescence responsive behavior in multi-ion detection and biological applications[J]. Sustainable Mater Technol, 2020, 23(4): 138. [18] ZHAO J, WANG Y N, DONG W W, et al. A robust luminescent Tb(III)-MOF with lewis basic pyridyl sites for the highly sensitive detection of metal ions and small molecules[J]. Inorg Chem, 2016, 55(7): 3265-3271. [19] ZHANG Y, FU Y Y, ZHU D F, et al. Recent advances in fluorescence sensor for the detection of peroxide explosives[J]. Chinese Chem Lett, 2016, 27(8): 1429-1436. [20] SHEHAB M, EBRAHIM S, Soliman M. Graphene quantum dots prepared from glucose as optical sensor for glucose[J]. J Lumin, 2017, 184(12): 110-116. [21] WENG C I, CHANG H T, LIN C H, et al. One-step synthesis of biofunctional carbon quantum dots for bacterial labeling[J]. Biosens Bioelectron, 2015, 68(6): 1-6. [22] SHI Y X, LIU X, WANG M, et al. Synthesis of N-doped carbon quantum dots from bio-waste lignin for selective irons detection and cellular imaging[J]. Int J Biol Macromol, 2019, 128(5): 537-545. [23] MINTZ K J, ZHOU Y, LEBLANC R M, et al. Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure[J]. Nanoscale, 2019, 11(11): 4634-4652. [24] SHAIKH A F, TAMBOLI M S, PATIL R H, et al. Bioinspired carbon quantum dots: an antibiofilm agents[J]. J Nanosci Nanotechnol, 2019, 19(4): 2339-2345. [25] WU F S, SU H F , ZHU X J, et al. Near-infrared emissive lanthanide hybridized carbon quantum dots for bioimaging applications[J]. J Mater Chem B, 2016, 4(38): 6366-6372. [26] WU F S, SU H F, WANG K, et al. Facile synthesis of N-rich carbon quantum dots from porphyrins as efficient probes for bioimaging and biosensing in living cells[J]. Int J Nanomed, 2017, 12(10): 7375-7391. [27] 黄国斌, 骆登峰, 张茂升. 多色高发光效率CsPbX3(X=Cl,Br,I)钙钛矿量子点的制备及其在发光二极管中的应用[J]. 应用化学, 2019, 36(8): 932-938. HUANG G B, LUO D F, ZHANG M S. Preparation of CsPbX3(X=Cl,Br,I) perovskite quantum dots with multicolor and high luminescence efficiency and its application in light emitting diode devices[J]. Chinese J Appl Chem, 2019, 36(8): 932-938. [28] YUAN F L, WANG Z B, LI X H, et al. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes[J]. J Adv Mater, 2017, 29(3): 1604436.1-1604436.6. [29] YU J, XU C X, TIAN Z S, et al. Facilely synthesized N-doped carbon quantum dots with high fluorescent yield for sensing Fe3+[J]. New J Chem, 2016, 40(3): 2083-2088. [30] BHARATHI D, SIDDLINGESHWAR B, KRISHNA R H, et al. Green and cost effective synthesis of fluorescent carbon quantum dots for dopamine detection[J]. J Fluoresc, 2018, 28(2): 573-579. [31] LIU Y L, ZHOU Q X. Sensitive pH probe developed with water-soluble fluorescent carbon dots from chocolate by one-step hydrothermal method[J]. Int J Environ Anal Chem, 2017, 97(12): 1119-1131. [32] 马红燕, 王靖原, 张越诚, 等. 以花生碳量子点为探针基于其荧光猝灭-恢复测定多巴胺的研究[J]. 光谱学与光谱分析, 2020, 40(4): 1093-1098. MA H Y, WANG J Y, ZHANG Y C, et al. Determination of dopamine using peanut carbon quantum dots as probe based on fluorescence quenching recovery[J]. Spectrosc Spectr Anal, 2020, 40(4): 1093-1098. [33] SHEN J, SHANG S M, CHEN X Y, et al. Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging[J]. Mater Sci Eng C, 2017, 76(7): 856-864. [34] DU J L, WANG H Y, WANG L, et al. Insight into the effect of functional groups on visible fluorescence emissions of graphene quantum dots[J]. J Mater Chem C, 2016, 4(11): 2235-2242. [35] LIN L X, ZHANG S W. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes[J]. Chem Commun, 2012, 48(82): 10177-10179. [36] LUCAS B N, JORGE H A, MARIO V V, et al. NADH oxidation onto different carbon-based sensors: effect of structure and surface-oxygenated groups[J]. J Sens, 2018, 2018(3): 1-9. [37] WANG R, LU K Q, TANG Z R, et al. Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis[J]. J Mater Chem A, 2017, 5(8): 3717-3734. [38] ZHAO H L, QIU F, JIN S B, et al. High work-hardening effect of the pure NiAl intermetallic compound fabricated by the combustion synthesis and hot pressing technique[J]. Mater Lett, 2011, 65(17/18): 2604-2606. [39] LI C L, ZHANG X X, ZHANG W J, et al. Carbon quantum dots derived from pure solvent tetrahydrofuran as a fluorescent probe to detect pH and silver ion[J]. J Photochem Photobiol A, 2019, 382(9): 111981. [40] HUANG J X, HE Y L, ZHANG Z B, et al. Synthesis of high-efficient red carbon dots for pH detection[J]. J Lumin, 2019, 215(11): 116640. [41] ZONG J, YANG X L, TRINCHI A, et al. Carbon dots as fluorescent probes for “off-on” detection of Cu2+ and L-cysteine in aqueous solution[J]. Biosens Bioelectron, 2014, 51(1): 330-335. |