
Chinese Journal of Applied Chemistry ›› 2023, Vol. 40 ›› Issue (8): 1205-1213.DOI: 10.19894/j.issn.1000-0518.230120
• Full Papers • Previous Articles
Lian-Cheng HUI, Jian-Xing ZHUANG, Shun XIAO, Mei-Ping LI, Meng-Yuan JIN, Qing LYU()
Received:
2023-04-24
Accepted:
2023-06-30
Published:
2023-08-01
Online:
2023-08-24
Contact:
Qing LYU
About author:
lvqing@sgu.edu.cnSupported by:
CLC Number:
Lian-Cheng HUI, Jian-Xing ZHUANG, Shun XIAO, Mei-Ping LI, Meng-Yuan JIN, Qing LYU. Nickel-Nitrogen-Doped Graphdiyne as an Efficient Catalyst for Oxygen Reduction[J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1205-1213.
Fig.6 Electrochemical tests of Ni-N-HsGDY catalysts (A) at different temperatures, (B) with different Ni contents, (C) with or without melamine; (D) Electron transfer number and peroxide yield of Ni-N-HsGDY-2%
1 | LIU Y, FENG C. Promoting renewable energy through national energy legislation[J]. Energy Economics, 2023, 118: 106504. |
2 | ZHANG T T, JOAO URATANI, HUANG Y X, et al. Hydrogen liquefaction and storage: recent progress and perspectives[J]. Renew Sustainable Energy Rev, 2023, 176: 113204. |
3 | TEBYETEKERWA M, DUIGNAN T T, XU Z, et al. Rechargeable DUAL-CARBON batteries: a sustainable battery technology[J]. Adv Energy Mater, 2022, 12: 2202450. |
4 | FENG Z, MA Y Q, LI Y, et al. Charge-compensated co-doping of graphdiyne with boron and nitrogen to form metal-free electrocatalysts for the oxygen reduction reaction[J]. Phys Chem Chem Phys, 2020, 22: 1493-1501. |
5 | YU H D, WU L M, NI B X, et al. Research progress on porous carbon-based non-precious metal electrocatalysts[J]. Materials, 2023, 16: 3283. |
6 | DUAN W J, LI G, LEI Z C, et al. Highly active and durable carbon electrocatalyst for nitrate reduction reaction[J]. Water Res, 2019, 161: 126-135. |
7 | WANG Y, WANG L, FU H G. Research progress of Fe-N-C catalysts for the electrocatalytic oxygen reduction reaction[J]. Sci China Mater, 2022, 65(7): 1701-1722. |
8 | ZHU Y T, YUE K H, XIA C F, et al. Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc-air batteries[J]. Nano-Micro Lett, 2021, 13: 137. |
9 | ZHAO R G, NI B X, WU L M, et al. Carbon-based iron-cobalt phosphate FeCoP/C as an effective ORR/OER/HER trifunctional electrocatalyst[J]. Colloids Surf A: Physicochem Eng Asp, 2022, 635: 128118. |
10 | YANG X F, WANG A Q, QIAO B T, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis[J]. Acc Chem Res, 2013, 46: 1740-1748. |
11 | LIU J Y. Catalysis by supported single metal atoms[J]. ACS Catal, 2017, 7: 34-59. |
12 | ZHANG J, FENG X L. Graphdiyne electrocatalyst[J]. Joule, 2018, 2(8): 1396-1398. |
13 | FENG Z, MA Y Q, LI Y, et al. Oxygen molecule dissociation on heteroatom doped graphdiyne[J]. Appl Surf Sci, 2019, 494: 421-429. |
14 | ZHAO Y S, WAN J W, YAO H Y, et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis[J]. Nat Chem, 2018, 9: 924-931. |
15 | DAS B K, SEN D, DR K K. Mechanism of oxygen reduction reaction in alkaline medium on nitrogen-doped graphyne and graphdiyne families: a first principles study[J]. ChemPhysChem, 2022, 23: e202100900. |
16 | SUN W P, DOU S X. sp-Hybridized nitrogen enhances oxygen reduction reaction kinetics[J]. Chem, 2018, 4(9): 2024-2026. |
17 | CHEN X Z, WEE-JUN ONG, KONG Z Z, et al. Probing the active sites of site-specifific nitrogen doping in metal-free graphdiyne for electrochemical oxygen reduction reactions[J]. Sci Bull, 2020, 65: 45-54. |
18 | LV Q, WANG N, SI W Y, et al. Pyridinic nitrogen exclusively doped carbon materials as effiffifficient oxygen reduction electrocatalysts for Zn-air batteries[J]. App Catal B: Environ, 2020, 261: 118234. |
19 | QI S Y, WANG J R, SONG X H, et al. Synergistic trifunctional electrocatalysis of pyridinic nitrogen and single transition-metal atoms anchored on pyrazine-modifified graphdiyne[J]. Chin Sci Bull, 2020, 65: 995-1002. |
20 | KANG B T, WU S, MA J P, et al. Synergy of sp-N and sp 2-N codoping endows graphdiyne with comparable oxygen reduction reaction performance to Pt[J]. Nanoscale, 2019, 11: 16599-16605. |
21 | YAO H Y, ZHAO Y S, YANG N L, et al. Molecule functionalization to facilitate electrocatalytic oxygen reduction on graphdiyne[J]. J Energy Chem, 2022, 65: 141-148. |
22 | WANG X, YANG Z, SI W Y, et al. Cobalt-nitrogen-doped graphdiyne as an effificient bifunctional catalyst for oxygen reduction and hydrogen evolution reaction[J]. Carbon, 2019, 147: 9-18. |
23 | ZENG J, YANG T, XU H, et al. Cobalt(Ⅲ) corrole-tethered semiconducting graphdiyne fifilm for effificient electrocatalysis of oxygen reduction reaction[J]. Mater Today Chem, 2022, 25: 100932. |
24 | SI W Y, YANG Z, WANG X, et al. Fe,N-codoped graphdiyne displaying efficient oxygen reduction reaction activity[J]. ChemSusChem, 2019, 12: 173-178. |
25 | DANIYAL IRFAN A, MARIA JADE CATALAN OPULENCIA B, SAADE ABDALKAREEM JASIM, et al. Systematically theoretical investigation the effect of nitrogen and iron-doped graphdiyne on the oxygen reduction reaction mechanism in proton exchange membrane fuel cells[J]. Int J Hydrogen Energy, 2022, 47: 17341-17350. |
26 | MELISSA E KREIDER, ALESSANDRO GALLO, SEOIN BACK, et al. Precious metal-free nickel nitride catalyst for the oxygen reduction reaction[J]. ACS Appl Mater Interfaces, 2019, 11: 26863-26871. |
27 | WANG N N, ZHENG X G, YAER B A, et al. Electrocatalytic performance of cobalt/nickel nanoparticles encapsulated by N-doped carbon nanotubes toward the oxygen reduction reaction[J]. Appl Surf Sci, 2023, 615: 156317. |
28 | CUI X D, ZHANG B L, ZENG C Y, et al. Monolithic nanoporous Ni-Fe alloy by dealloying laser processed Ni-Fe-Al as electrocatalyst toward oxygen evolution reaction[J]. Int J Hydrogen Energy, 2018, 43: 15234-15244. |
29 | YASSINE M, MOHAMMED B, MOUSTAPHA E, et al. The first structural, morphological and magnetic property studies on spinel nickel cobaltite nanoparticles synthesized from non-standard reagents[J]. New J Chem, 2023, 47: 4888. |
30 | MA Y, LIN J, SONG X N, et al. Local structures of nitrogen-doped graphdiynes determined by computational X-ray spectroscopy[J]. Carbon, 2019, 149: 672-678. |
31 | LV Q, SI W Y, HE J J, et al. Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction[J]. Nat Commun, 2018, 9: 3376. |
[1] | Er-Gui LUO, Tao TANG, Yi WANG, Jun-Ming ZHANG, Yu-Hong CHANG, Tian-Jun HU, Jian-Feng JIA. Progress on Tuning the Geometric and Electronic Structure of Precious Metal Catalysts for Hydrogen Peroxide Production via Two-Electron Oxygen Reduction [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1063-1076. |
[2] | Yi-Ning DONG, He LI, Xue GONG, Ce HAN, Ping SONG, Wei-Lin XU. Research Progress of Non-Pt-Based Catalysts in Cathode Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cells [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1077-1093. |
[3] | Jin-Hui LIANG, Le-Cheng LIANG, Zhi-Ming CUI. Research Progress on Intermetallic Compound Electrocatalysts Applied in the Interconversion Between Hydrogen and Electric Power [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1140-1157. |
[4] | Wei WANG, Jia-Yuan LI. Research Progress of Cobalt Phosphide Heterojunction Catalysts for Electrolytic Hydrogen Evolution Reaction [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1175-1186. |
[5] | Rui-Xue ZHENG, Qing-Lei MENG, Li ZHANG, Chang-Peng LIU, Wei XING, Mei-Ling XIAO. Hierarchically Porous Fe-N-C Catalysts for Efficient Electrocatalytic Oxygen Reduction Reaction [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1187-1194. |
[6] | Jia-Xin LIU, Jia-He FAN, Shu-Hui LI, Liang MA. Synthesis of Rh@Pt/C Concave Cubic Core-Shell Catalyst and Its Ethanol Electro-Oxidation Performance [J]. Chinese Journal of Applied Chemistry, 2023, 40(8): 1195-1204. |
[7] | Peng-Hui FAN, Jie LIU, Sheng-Hui LOU, Tao TANG. Research Progress on Synergists of Phosphorous Flame Retardants in Epoxy Resin [J]. Chinese Journal of Applied Chemistry, 2023, 40(5): 653-665. |
[8] | Ying LI, Yun ZHANG, Liang-Liang LIN, Hu-Jun XU. Synergistic Effect of Ternary Compound System of Sodium N‑Lauroyl Methylalanine [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1262-1273. |
[9] | Chao ZHANG. Research Prospect of Single Atom Catalysts Towards Electrocatalytic Reduction of Carbon Dioxide [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 871-887. |
[10] | Yan WANG, Shu-Cong ZHANG, Xing-Kun WANG, Zhi-Cheng LIU, Huan-Lei WANG, Ming-Hua HUANG. Research Progress on Transition Metal⁃Based Catalysts for Hydrogen Evolution Reaction via Seawater Electrolysis [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 927-940. |
[11] | Lin-Jie SHANG, Jiang LIU, Ya-Qian LAN. Covalent Organic Framework Materials for Photo/ Electrocatalytic Carbon Dioxide Reduction [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 559-584. |
[12] | Li-Zhi SUN, Hao LYU, Xiao-Wen MIN, Ben LIU. Mesoporous Palladium⁃Boron Alloy Nanocatalysts: Synthesis and Performance in Methanol Oxidation Electrocatalysis [J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 673-684. |
[13] | Xiao-Mei HUANG, Xiang DENG, Lang-Man XING, Wei CHEN, Li SUN, Xiao-Yu ZHU. Study of Electrochemical Non-enzyme Glucose Sensor Based on Cu(Ⅱ)Co(Ⅱ) Bimetallic Carbon Nanosheets [J]. Chinese Journal of Applied Chemistry, 2022, 39(12): 1891-1902. |
[14] | Dan WANG, Xian-Biao HOU, Xing-Kun WANG, Zhi-Cheng LIU, Huan-Lei WANG, Ming-Hua HUANG. Research Progress of Carbon‑Encapsulated Iron‑Based Nanoparticles Electrocatalysts for Zinc‑Air Batteries [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1488-1500. |
[15] | He LI, Gong LI, Xue GONG, Ming-Bo RUAN, Ce HAN, Ping SONG, Wei-Lin XU. Research on Performance Decay Mechanism of Pt/C Catalyst in Long‑Term ORR Test [J]. Chinese Journal of Applied Chemistry, 2022, 39(10): 1564-1571. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1107
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 399
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||