Chinese Journal of Applied Chemistry ›› 2022, Vol. 39 ›› Issue (02): 258-265.DOI: 10.19894/j.issn.1000-0518.210084
• Full Papers • Previous Articles Next Articles
Jing TANG, Na ZHANG(), Dong-Xu SHI, Fang-Hui ZHANG, Jian-Jie TANG
Received:
2021-03-01
Accepted:
2021-07-02
Published:
2022-02-10
Online:
2022-02-09
Contact:
Na ZHANG
Supported by:
CLC Number:
Jing TANG, Na ZHANG, Dong-Xu SHI, Fang-Hui ZHANG, Jian-Jie TANG. Synthesis of UiO-66-NH2Grafted Pyridineimine Cobalt Catalyst and Its Catalytic Performance in Ethylene Oligomerization[J]. Chinese Journal of Applied Chemistry, 2022, 39(02): 258-265.
Add to citation manager EndNote|Ris|BibTeX
URL: http://yyhx.ciac.jl.cn/EN/10.19894/j.issn.1000-0518.210084
样品名称 | 比表面积 | 孔容 | 孔径 |
---|---|---|---|
Sample | BET/(m2·g-1) | Pore volume/(cm3·g-1) | Pore size/nm |
UiO-66-NH2 | 1020.41 | 0.77 | 3.63 |
UiO-66-Pyr-Co | 910.21 | 0.62 | 2.74 |
Table 1 Pore structural parameters of UiO-66-NH2and UiO-66-Pyr-Co
样品名称 | 比表面积 | 孔容 | 孔径 |
---|---|---|---|
Sample | BET/(m2·g-1) | Pore volume/(cm3·g-1) | Pore size/nm |
UiO-66-NH2 | 1020.41 | 0.77 | 3.63 |
UiO-66-Pyr-Co | 910.21 | 0.62 | 2.74 |
温度 | 活性 | 产物选择性 | ||
---|---|---|---|---|
Temperature/℃ | 10-5Activity/(g·mol-1 Co·h-1) | Product selectivity/% | ||
C4 | C6 | C8 | ||
15 | 0.36 | 87.42 | 11.59 | 0.99 |
25 | 0.52 | 90.17 | 8.76 | 1.07 |
35 | 0.47 | 90.89 | 7.95 | 1.16 |
45 | 0.40 | 92.39 | 7.25 | 0.36 |
55 | 0.29 | 92.52 | 7.00 | 0.48 |
Table 2 Effect of reaction temperature on the property of ethylene oligomerization
温度 | 活性 | 产物选择性 | ||
---|---|---|---|---|
Temperature/℃ | 10-5Activity/(g·mol-1 Co·h-1) | Product selectivity/% | ||
C4 | C6 | C8 | ||
15 | 0.36 | 87.42 | 11.59 | 0.99 |
25 | 0.52 | 90.17 | 8.76 | 1.07 |
35 | 0.47 | 90.89 | 7.95 | 1.16 |
45 | 0.40 | 92.39 | 7.25 | 0.36 |
55 | 0.29 | 92.52 | 7.00 | 0.48 |
n(Al)/n(Co) | 活性 | 产物选择性 | ||
---|---|---|---|---|
10-5Activity/(g·mol-1 Co·h-1) | Product selectivity/% | |||
C4 | C6 | C8 | ||
300 | 0.29 | 86.16 | 12.38 | 1.46 |
500 | 0.52 | 90.17 | 8.76 | 1.07 |
700 | 0.57 | 91.20 | 8.03 | 0.77 |
1000 | 0.81 | 91.62 | 7.99 | 0.39 |
1500 | 0.74 | 93.35 | 6.16 | 0.49 |
Table 3 Effect of n(Al)/n(Co)on the property of ethylene oligomerization
n(Al)/n(Co) | 活性 | 产物选择性 | ||
---|---|---|---|---|
10-5Activity/(g·mol-1 Co·h-1) | Product selectivity/% | |||
C4 | C6 | C8 | ||
300 | 0.29 | 86.16 | 12.38 | 1.46 |
500 | 0.52 | 90.17 | 8.76 | 1.07 |
700 | 0.57 | 91.20 | 8.03 | 0.77 |
1000 | 0.81 | 91.62 | 7.99 | 0.39 |
1500 | 0.74 | 93.35 | 6.16 | 0.49 |
压力 | 活性 | 产物选择性 | ||
---|---|---|---|---|
Pressure/MPa | 10-5Activity/(g·mol-1 Co·h-1) | Product selectivity/% | ||
C4 | C6 | C8 | ||
0.1 | 0.50 | 93.78 | 6.11 | 0.11 |
0.3 | 0.79 | 91.85 | 8.02 | 0.13 |
0.5 | 0.81 | 91.62 | 7.99 | 0.39 |
0.7 | 0.94 | 89.03 | 9.14 | 1.83 |
1.0 | 1.23 | 88.96 | 9.59 | 1.44 |
Table 4 Effect of ethylene pressure on the property of ethylene oligomerization
压力 | 活性 | 产物选择性 | ||
---|---|---|---|---|
Pressure/MPa | 10-5Activity/(g·mol-1 Co·h-1) | Product selectivity/% | ||
C4 | C6 | C8 | ||
0.1 | 0.50 | 93.78 | 6.11 | 0.11 |
0.3 | 0.79 | 91.85 | 8.02 | 0.13 |
0.5 | 0.81 | 91.62 | 7.99 | 0.39 |
0.7 | 0.94 | 89.03 | 9.14 | 1.83 |
1.0 | 1.23 | 88.96 | 9.59 | 1.44 |
循环次数 | 活性 | 产物选择性 | ||
---|---|---|---|---|
Cycles | 10-5Activity/(g·mol-1 Co·h-1) | Product selectivity/% | ||
C4 | C6 | C8 | ||
1 | 1.23 | 88.96 | 9.59 | 1.44 |
2 | 1.06 | 90.31 | 8.86 | 0.83 |
3 | 0.92 | 89.25 | 9.97 | 0.78 |
4 | 0.68 | 91.04 | 8.35 | 0.61 |
Table 5 The recyclability of UiO-66-NH2grafted pyridineimine cobalt catalyst
循环次数 | 活性 | 产物选择性 | ||
---|---|---|---|---|
Cycles | 10-5Activity/(g·mol-1 Co·h-1) | Product selectivity/% | ||
C4 | C6 | C8 | ||
1 | 1.23 | 88.96 | 9.59 | 1.44 |
2 | 1.06 | 90.31 | 8.86 | 0.83 |
3 | 0.92 | 89.25 | 9.97 | 0.78 |
4 | 0.68 | 91.04 | 8.35 | 0.61 |
催化剂 | 活性 | 产物选择性 | ||
---|---|---|---|---|
Catalyst | 10-5Activity/(g··h-1) | Product selectivity/% | ||
C4 | C6 | C8+ | ||
Uio-66-Pyr-Co a | 1.23 | 88.96 | 9.59 | 1.44 |
Pyr-Co b | 0.20 | 81.67 | 13.11 | 5.22 |
Table 6 Effect of catalyst structure on the property of ethylene oligomerization
催化剂 | 活性 | 产物选择性 | ||
---|---|---|---|---|
Catalyst | 10-5Activity/(g··h-1) | Product selectivity/% | ||
C4 | C6 | C8+ | ||
Uio-66-Pyr-Co a | 1.23 | 88.96 | 9.59 | 1.44 |
Pyr-Co b | 0.20 | 81.67 | 13.11 | 5.22 |
[1] | SUO H Y, SOLAN G A, MA Y P, et al. Developments in compartmentalized bimetallic transition metal ethylene polymerization catalysts[J]. Coordin Chem Rev, 2018, 372:101-106. |
[2] | LEE H, JOEY, PARKH. Chromiumcatalystsforethylenetrimerization/tetramerizationfunctionalizedwith ortho-fluorinated arylphosphine ligand[J]. Catal Commun, 2019, 121:15-18. |
[3] | 张娜, 马莉丽, 陈丽铎, 等. 超支化镍系催化剂构效关系及催化乙烯齐聚机理[J]. 化工进展, 2020, 39(2):539-547. |
ZHANG N, MA L L, CHEN L D, et al. Structure-property relationship and mechanism of catalytic ethylene oligomerization of hyperbrached nickel catalyst[J]. Chem Ind Eng Prog, 2020, 39(2):539-547. | |
[4] | 王俊, 刘锦义, 陈丽铎, 等. 超支化双吡啶亚胺铬催化剂的合成及催化乙烯齐聚性能[J]. 应用化学, 2019, 36(7):773-781. |
WANG J, LIU J Y, CHEN L D, et al. Synthesis and ethylene oligomerization behavior of hyperbranched bispyridineimine chromium catalyst[J]. Chinese J Appl Chem, 2019, 36(7):773-781. | |
[5] | ALAM F, WANG J D, DONG C H, et al. Chromium (Ⅲ) catalysts based on tridentate silicon-bridged tris (diphenylphosphine) ligands for selective ethylene tri-/tetramerization[J]. J Catal, 2020, 392:278-286. |
[6] | ANTONOV A A, SEMIKOLENOVA N V, TALSI E P, et al. Catalytic ethylene oligomerization on cobalt (Ⅱ) bis (imino) pyridine complexes bearing electron-withdrawing groups[J]. J Organomet Chem, 2019, 884(30):55-58. |
[7] | FENG C Y, ZHOU S M, WANG D B, et al. Cooperativity in highly active ethylene dimerization by dinuclear nickel complexes bearing a bifunctional PN ligand[J]. Organometallics, 2021, 40(2):184-193. |
[8] | WANG M Z, WU W, WANG X, et al. Research progress of iron-based catalysts for selective oligomerization of ethylene[J]. RSC Adv, 2020, 10(71):43640-43652. |
[9] | SHIN M, SUH Y W. Ethylene oligomerization over SiO2-Al2O3supported Ni2P catalyst[J]. ChemCatChem, 2020, 12(1):135-140. |
[10] | JIN F, YAN Y Z, WU G Y. Ethylene oligomerization over H-and Ni-form aluminosilicate composite with ZSM-5 and MCM-41 structure: effect of acidity strength, nickel site and porosity[J]. Catal Today, 2020, 355:148-161. |
[11] | GOETJEN T A, ZHANG X, LIU J, et al. Metal-organic framework supported single site chromium (Ⅲ) catalyst for ethylene oligomerization at low pressure and temperature[J]. ACS Sustainable Chem Eng, 2019, 7(2):2553-2557. |
[12] | 山东明, 韩阳, 户艳平, 等. MOFs作为催化剂在乙烯选择性齐聚中的应用进展[J]. 石油化工, 2019, 48(2):203-208. |
SHAN D M, HAN Y, LU Y P, et al. Application progress of MOFs as catalysts for selective ethylene oligomerization[J]. Petrochem Technol, 2019, 48(2):203-208. | |
[13] | ARROZI U S F, BON V, KRAUSE S, et al. In situ imine-based linker formation for the synthesis of zirconium MOFs: a route to CO2capture materials and ethylene oligomerization catalysts[J]. Inorg Chem, 2020, 59(1):350-359. |
[14] | LIU B, JIE S Y, BU Z Y, et al. Post synthetic modifification of mixed-linker metal-organic frameworks for ethylene oligomerization[J]. RSC Adv, 2014, 4(107):62343-62346. |
[15] | MADRAHIMOV S T, GALLAGHER J R, ZHANG G H, et al. Gas-phase dimerization of ethylene under mild conditions catalyzed by MOF materials containing (bpy) NiⅡcomplexes[J]. ACS Catal, 2015, 5(11):6713-6718. |
[16] | PANCHENKO V N, MATROSOVA M M, JEONA J, et al. Catalytic behavior of metal-organic frameworks in the Knoevenagel condensation reaction[J]. J Catal, 2014, 316:251-259. |
[17] | ZUBKEVICH S V, TUSKAEV V A, GAGIEVA S C, et al. NNNO-Heteroscorpionate nickel (Ⅱ) and cobalt (Ⅱ) complexes for ethylene oligomerization: the unprecedented formation of odd carbon number olefins[J]. Appl Organomet Chem, 2020, 34(10):5873-5887. |
[18] | CHEN L D, MA L L, JIANG Y, et al. Synthesis and characterization of iron, cobalt and nickel complexes bearing para-phenylene-linked pyridine imine ligand and their catalytic properties for ethylene oligomerization[J]. Polym Bull, 2021, 78(1):415-432. |
[1] | Yi-Cheng ZHANG, Fei ZHA, Xiao-Hua TANG, Yue CHANG, Hai-Feng TIAN, Xiao-Jun GUO. Research Progress of Heterogeneous Catalytic Preparation of Organic Peroxides [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 769-788. |
[2] | Yi-Chen YU, Yu-Chen ZHANG, Yao-Yuan ZHANG, Qin WU, Da-Xin SHI, Kang-Cheng CHEN, Han-Sheng LI. Research Progress of Bulk Metal Oxides for Non-oxidative Propane Dehydrogenation [J]. Chinese Journal of Applied Chemistry, 2023, 40(6): 789-805. |
[3] | Bing LI, Jun-Hui LIU, Ya-Kun SONG, Xiang LI, Xu-Ming GUO, Jian XIONG. Recent Advances in Application of Metal-Organic Frameworks for Hydrogen Generation by Catalytic Hydrolysis of Ammonia Borane [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 329-340. |
[4] | Zhen-Bang LIU, Shuo ZHANG, Yu BAO, Ying-Ming MA, Wei-Qi LIANG, Wei WANG, Ying HE, Li NIU. Progress of Application Research on Cheminformatics in Deep Learning [J]. Chinese Journal of Applied Chemistry, 2023, 40(3): 360-373. |
[5] | Lu-Fei WANG, Meng-Meng ZHEN, Bo-Xiong SHEN. Research Progress of Controlling Lithium-Sulfur Batteries by Electrocatalysts under Lean Electrolyte Conditions [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 188-209. |
[6] | Hong-Li YANG, Qian-Qi WANG, Huan WANG, Han YAN, Peng-Hui LIN, Jin-Qiu SONG, Yang DING, Shan-Hua LI, Fu-Nan LI. Structure Optimization, Synthesis and Anti-hepatocarcinoma Activity of Cinnamamide Compounds [J]. Chinese Journal of Applied Chemistry, 2023, 40(2): 261-267. |
[7] | Mou-Cui LI, Yang-Ming DONG, Ying-Hui REN, Hai-Xia MA, Le QI. Synthesis, Antifungal Activity and Molecular Docking Study of 1,2,4-Triazole Bis-Schiff Base Derivatives [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 116-125. |
[8] | Yu-Hua XIONG, Lei ZHOU, Shi-Zhong YANG, Bo-Zhong MU. Enzymatic Properties and Gel Breaking Performance of Low-temperature β-Mannanase [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 134-145. |
[9] | Jing-Xia GAO, Zi-An WANG, Lian-Ming ZHANG, Jian-Ping LI. Research Progress of Macrocyclic Compounds in Highly Selective Molecular Imprinting Recognition System [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 24-39. |
[10] | Rong CAO, Jie-Zhen XIA, Man-Hua LIAO, Lu-Chao ZHAO, Chen ZHAO, Qi WU. Theoretical Research Progress of Single Atom Catalysts in Electrochemical Synthesis of Ammonia [J]. Chinese Journal of Applied Chemistry, 2023, 40(1): 9-23. |
[11] | Dan ZHANG, Run-Mei SHANG, Zhen-Tao ZHAO, Jun-Hua LI, Jin-Juan XING. Selective Oxidation of Methanol to Dimethoxymethane over V/Ce⁃Al2O3 Catalysts [J]. Chinese Journal of Applied Chemistry, 2022, 39(9): 1429-1436. |
[12] | Xian WANG, Xiao-Long YANG, Rong-Peng MA, Chang-Peng LIU, Jun-Jie GE, Wei XING. Atomic Dispersion Ir‑N‑C Catalysts for Anode Anti‑poisoning Electrolysis in Fuel Cell [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1202-1208. |
[13] | Ye LIU, Shao-Bo GUO, Yan-Li LIANG, Hong-Guang GE, Jian-Qi MA, Zhi-Feng LIU, Bo LIU. Preparation and Catalytic Performance of Core‑Shell CuFe2O4@NH2@Pt Nanocomposites [J]. Chinese Journal of Applied Chemistry, 2022, 39(8): 1237-1245. |
[14] | Chao ZHANG. Research Prospect of Single Atom Catalysts Towards Electrocatalytic Reduction of Carbon Dioxide [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 871-887. |
[15] | Shi-Shuai LI, Jia-Qi LIU, Jia-Yi WANG, Jiang-Feng YANG. Research Progress on Synthesis of Hierarchical Beta Zeolites [J]. Chinese Journal of Applied Chemistry, 2022, 39(6): 912-926. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||